圖形變換包含平移、軸對(duì)稱(chēng)、旋轉(zhuǎn)、位似四種變換,那么二次函數(shù)的圖像在其圖形變化(平移、軸對(duì)稱(chēng)、旋轉(zhuǎn))的過(guò)程中,如何完成解析式的確定呢?解決此類(lèi)問(wèn)題的很多,關(guān)鍵在于解決問(wèn)題的著眼點(diǎn)。筆者認(rèn)為最好的是用頂點(diǎn)式的。因此解題時(shí),先將二次函數(shù)解析式化為頂點(diǎn)式,確定其頂點(diǎn)坐標(biāo),再根據(jù)具體圖形變換的特點(diǎn),確定變化后新的頂點(diǎn)坐標(biāo)及a值。
1、平移:二次函數(shù)圖像經(jīng)過(guò)平移變換不會(huì)改變圖形的形狀和開(kāi)口方向,因此a值不變。頂點(diǎn)位置將會(huì)隨著整個(gè)圖像的平移而變化,因此只要按照點(diǎn)的移動(dòng)規(guī)律,求出新的頂點(diǎn)坐標(biāo)即可確定其解析式。
例1.將二次函數(shù)y=x2-2x-3的圖像向上平移2個(gè)單位,再向右平移1個(gè)單位,得到的新的圖像解析式為_(kāi)____
分析:將y=x2-2x-3化為頂點(diǎn)式y(tǒng)=(x-1)2-4,a值為1,頂點(diǎn)坐標(biāo)為(1,-4),將其圖像向上平移2個(gè)單位,再向右平移1個(gè)單位,那么頂點(diǎn)也會(huì)相應(yīng)移動(dòng),其坐標(biāo)為(2,-2),由于平移不改變二次函數(shù)的圖像的形狀和開(kāi)口方向,因此a值不變,故平移后的解析式為y=(x-2)2-2。
2、軸對(duì)稱(chēng):此圖形變換包括x軸對(duì)稱(chēng)和關(guān)于y軸對(duì)稱(chēng)兩種方式。
二次函數(shù)圖像關(guān)于x軸對(duì)稱(chēng)的圖像,其形狀不變,但開(kāi)口方向相反,因此a值為原來(lái)的相反數(shù)。頂點(diǎn)位置改變,只要根據(jù)關(guān)于x軸對(duì)稱(chēng)的點(diǎn)的坐標(biāo)特征求出新的頂點(diǎn)坐標(biāo),即可確定其解析式。
二次函數(shù)圖像關(guān)于y軸對(duì)稱(chēng)的圖像,其形狀和開(kāi)口方向都不變,因此a值不變。但是頂點(diǎn)位置會(huì)改變,只要根據(jù)關(guān)于y軸對(duì)稱(chēng)的點(diǎn)的坐標(biāo)特征求出新的頂點(diǎn)坐標(biāo),即可確定其解析式。
例2.求拋物線y=x2-2x-3關(guān)于x軸以及y軸對(duì)稱(chēng)的拋物線的解析式。
分析:y=x2-2x-3=(x-1)2-4,a值為1,其頂點(diǎn)坐標(biāo)為(1,-4),若關(guān)于x軸對(duì)稱(chēng),a值為-1,新的頂點(diǎn)坐標(biāo)為(1,4),故解析式為y=-(x-1)2+4;若關(guān)于y軸對(duì)稱(chēng),a值仍為1,新的頂點(diǎn)坐標(biāo)為(-1,-4),因此解析式為y=(x+1)2-4。
3、旋轉(zhuǎn):主要是指以二次函數(shù)圖像的頂點(diǎn)為旋轉(zhuǎn)中心,旋轉(zhuǎn)角為180°的圖像變換,此類(lèi)旋轉(zhuǎn),不會(huì)改變二次函數(shù)的圖像形狀,開(kāi)口方向相反,因此a值會(huì)為原來(lái)的相反數(shù),但頂點(diǎn)坐標(biāo)不變,故很容易求其解析式。
例3.將拋物線y=x2-2x+3繞其頂點(diǎn)旋轉(zhuǎn)180°,則所得的拋物線的函數(shù)解析式為_(kāi)_______
分析:y=x2-2x+3=(x-1)2+2中,a值為1,頂點(diǎn)坐標(biāo)為(1,2),拋物線繞其頂點(diǎn)旋轉(zhuǎn)180°后,a值為-1,頂點(diǎn)坐標(biāo)不變,故解析式為y=-(x-1)2+2。
以上內(nèi)容只是向同學(xué)們提供了解決此類(lèi)問(wèn)題的一種思考方法和解題思路,同學(xué)們不妨試一試。
本文來(lái)自:逍遙右腦記憶 http://m.portlandfoamroofing.com/chuzhong/56244.html
相關(guān)閱讀:關(guān)于初中數(shù)學(xué)分層作業(yè)的嘗試