整體設(shè)計(jì)
高中物理引入極限思想的出發(fā)點(diǎn)就在于它是一種常用的科學(xué)思維方法,上一章教材用極限思想介紹了瞬時(shí)速度和瞬時(shí)加速度,本節(jié)介紹v-t圖線下面四邊形的面積代表勻變速直線運(yùn)動(dòng)的位移時(shí),又一次應(yīng)用了極限思想.當(dāng)然,我們只是讓學(xué)生初步認(rèn)識(shí)這些極限思想,并不要求會(huì)計(jì)算極限.按教材這樣的方式來(lái)接受極限思想,對(duì)高中學(xué)生來(lái)說(shuō)是不會(huì)有太多困難的.學(xué)生學(xué)習(xí)極限時(shí)的困難不在于它的思想,而在于它的運(yùn)算和嚴(yán)格的證明,而這些,在教材中并不出現(xiàn).教材的宗旨僅僅是“滲透”這樣的思想.在導(dǎo)出位移公式的中,利用實(shí)驗(yàn)探究中所得到的一條紙帶上時(shí)間與速度的記 錄,讓學(xué)生思考與討論如何求出小車的位移,要鼓勵(lì)學(xué)生積極思考,充分表達(dá)自己的想法.可啟發(fā)、引導(dǎo)學(xué)生具體、深入地分析,肯定學(xué)生正確的想法,弄清楚錯(cuò)誤的原因.本節(jié)應(yīng)注重?cái)?shù)、形結(jié)合的問(wèn)題,過(guò)程中可采用探究式、討論式進(jìn)行授課.
教學(xué)重點(diǎn)
1.理解勻速直線運(yùn)動(dòng)的位移及其應(yīng)用.
2.理解勻變速直線運(yùn)動(dòng)的位移與時(shí)間的關(guān)系及其應(yīng)用.
教學(xué)難點(diǎn)
1.v-t圖象中圖線與t軸所夾的面積表示物體在這段時(shí)間內(nèi)運(yùn)動(dòng)的位移.
2.微元法推導(dǎo)位移公式.
課時(shí)安排
1課時(shí)
三維目標(biāo)
知識(shí)與技能
1.知道勻速直線運(yùn)動(dòng)的位移與時(shí)間的關(guān)系.
2.理解勻變速直線運(yùn)動(dòng)的位移及其應(yīng)用.
3.理解勻變速直線運(yùn)動(dòng)的位移與時(shí)間的關(guān)系及其應(yīng)用.
4.理解v-t圖象中圖線與t軸所夾的面積表示物體在這段時(shí)間內(nèi)運(yùn)動(dòng)的位移.
過(guò)程與方法
1.通過(guò)近似推導(dǎo)位移公式的過(guò)程,體驗(yàn)微元法的特點(diǎn)和技巧,能把瞬時(shí)速度的求法與此比較.
2.感悟一些數(shù)學(xué)方法的應(yīng)用特點(diǎn).
情感態(tài)度與價(jià)值觀[來(lái)源:學(xué)科網(wǎng)]
1.經(jīng)歷微元法推導(dǎo)位移公式和公式法推導(dǎo)速度位移關(guān)系,培養(yǎng)自己動(dòng)手的能力,增加物理情感.
2.體驗(yàn)成功的快樂(lè)和方法的意義.
課前準(zhǔn)備
多媒體課件、坐標(biāo)紙、鉛筆
教學(xué)過(guò)程
導(dǎo)入新課
情景導(dǎo)入
“適者生存”是自然界中基本的法則之一,獵豹要生存必須獲得足夠的食物,獵豹的食物來(lái)源中,羚羊是不可缺少的.假設(shè)羚羊從靜止開(kāi)始奔跑,經(jīng)50 m能加速到最大速度25 m/s,并能維持較長(zhǎng)的時(shí)間;獵豹從靜止開(kāi)始奔跑,經(jīng)60 m能加速到最大速度30 m/s,以后只能維持這個(gè)速度4.0 s.設(shè)獵豹在某次尋找食物時(shí),距離羚羊30 m時(shí)開(kāi)始攻擊,羚羊在獵豹開(kāi)始攻擊后1.0 s才開(kāi)始逃跑,假定羚羊和獵豹在加速階段分別做勻加速直線運(yùn)動(dòng),且均沿同一直線奔跑,獵豹能否成功捕獲羚羊?
故事導(dǎo)入
1962年11月,赫赫有名的“子爵號(hào)”飛機(jī)正在美國(guó)馬里蘭州伊利奧特市上空平穩(wěn)地飛行,突然一聲巨響,飛機(jī)從高空栽了下來(lái),事后發(fā)現(xiàn)釀成這場(chǎng)空中悲劇的罪魁禍?zhǔn)拙故且恢辉诳罩新肯璧奶禊Z.
在我國(guó)也發(fā)生過(guò)類似的事情.1991年10月6日,海南?谑袠(lè)東機(jī)場(chǎng),海軍航空兵的一架“014號(hào)”飛機(jī)剛騰空而起,突然,“砰”的一聲巨響,機(jī)體猛然一顫,飛行員發(fā)現(xiàn)左前三角擋風(fēng)玻璃完全破碎, 令人慶幸的是,飛行員憑著頑強(qiáng)的意志和嫻熟的技術(shù)終于使飛機(jī)降落在跑道上,追究原因還是一只迎面飛來(lái)的小鳥(niǎo).
飛機(jī)在起飛和降落過(guò)程中,與經(jīng)常棲息在機(jī)場(chǎng)附近的飛鳥(niǎo)相撞而導(dǎo)致“機(jī)毀鳥(niǎo)亡”.小鳥(niǎo)為何能把飛機(jī)撞毀呢?學(xué)習(xí)了本節(jié)知識(shí),我們就知道其中的原因了.
復(fù)習(xí)導(dǎo)入
前面我們學(xué)習(xí)了勻變速直線運(yùn)動(dòng)中速度與時(shí)間的關(guān)系,其關(guān)系式為v=v0+at.在探究速度與時(shí)間的關(guān)系時(shí),我們分別運(yùn)用了不同方法來(lái)進(jìn)行.我們知道,描述運(yùn)動(dòng)的物理量還有位移,那位移與時(shí)間的關(guān)系又是怎樣的呢?我們又將采用什么方法來(lái)探究位移與時(shí)間的關(guān)系呢?
推進(jìn)新課
一、勻速直線 運(yùn)動(dòng)的位移與時(shí)間的關(guān)系
做勻速直線運(yùn)動(dòng)的物體在時(shí)間t內(nèi)的位移x=v-t.
說(shuō)明:取運(yùn)動(dòng)的初始時(shí)刻物體的位置為坐標(biāo)原點(diǎn),這樣,物體在時(shí)刻t的位移等于這時(shí)的坐標(biāo)x,從開(kāi)始到t時(shí)刻的時(shí)間間隔為t.
教師設(shè)疑:同學(xué)們?cè)谧鴺?biāo)紙上作出勻速直線運(yùn)動(dòng)的v-t圖象,猜想一下,能否在v-t圖象中表示出做勻速直線運(yùn)動(dòng)的物體在時(shí)間t內(nèi)的位移呢?學(xué)生作圖并思考討論.
合作探究
1.作出勻速直線運(yùn)動(dòng)的物體的速度?時(shí)間圖象.
2.由圖象可看出勻速直線運(yùn)動(dòng)的v-t圖象是一條平行于t軸的直線.
3.探究發(fā)現(xiàn),從0??t時(shí)間內(nèi),圖線與t軸所夾圖形為矩形,其面積為v-t.
4.結(jié)論:對(duì)于勻速直線運(yùn)動(dòng),物體的位移對(duì)應(yīng)著v-t圖象中一塊矩形的面積,如圖2-3-1.
圖2-3-1
點(diǎn)評(píng):1.通過(guò)學(xué)生回答教師提出的問(wèn)題,培養(yǎng)學(xué)生應(yīng)用所學(xué)知識(shí)解決問(wèn)題的能力和語(yǔ)言概括表達(dá)能力.
2.通過(guò)對(duì)問(wèn)題的探究,提高學(xué)生把物理規(guī)律和數(shù)學(xué)圖象相結(jié)合的能力.
討論了勻速直線運(yùn)動(dòng)的位移可用v-t圖象中所夾的面積來(lái)表示的方法,勻變速直線運(yùn)動(dòng)的位移在v-t圖象中是不是也有類似的關(guān)系,下面我們就來(lái)學(xué)習(xí)勻變速直線運(yùn)動(dòng)的位移和時(shí)間的關(guān)系.
二、勻變速直線運(yùn)動(dòng)的位移
教師啟發(fā)引導(dǎo),進(jìn)一步提出問(wèn)題,但不進(jìn)行回答.
問(wèn)題:對(duì)于勻變速直線運(yùn)動(dòng)的位移與它的v-t圖象是不是也有類似的關(guān)系?
通過(guò)該問(wèn)題培養(yǎng)學(xué)生聯(lián)想的能力和探究問(wèn)題、大膽猜想的能力.
學(xué)生針對(duì)問(wèn)題思考,并閱讀“思考與討論”.
學(xué)生分組討論并說(shuō)出各自見(jiàn)解.
結(jié)論:學(xué)生A的計(jì)算中,時(shí)間間隔越小,計(jì)算出的誤差就越小,越接近真實(shí)值.
點(diǎn)評(píng):培養(yǎng)用微元法的思想分析問(wèn)題的能力和敢于提出與別人不同見(jiàn)解發(fā)表自己看法的勇氣.
說(shuō)明:這種分析方法是把過(guò)程先微分后再累加(積分)的定積分思想來(lái)解決問(wèn)題的方法,在以后的學(xué)習(xí)中經(jīng)常用到.比如:一條直線可看作由一個(gè)個(gè)的點(diǎn)子組成,一條曲線可看作由一條條的小線段組成.
教師活動(dòng):(投影)提出問(wèn)題:我們掌握了這種定積分分析問(wèn)題的思想,下面同學(xué)們?cè)谧鴺?biāo)紙上作初速度為v0的勻變速直線運(yùn)動(dòng)的v-t圖象,分析一下圖線與t軸所夾的面積是不是也表示勻變速直線運(yùn)動(dòng)在時(shí)間t內(nèi)的位移呢?
學(xué)生作出v-t圖象,自我思考解答,分組討論.
討論交流:1.把每一小段Δt內(nèi)的運(yùn)動(dòng)看作勻速運(yùn)動(dòng),則各矩形面積等于各段 勻速直線運(yùn)動(dòng)的位移,從圖2-3-2看出,矩形面積之和小于勻變速直線運(yùn)動(dòng)在該段時(shí)間內(nèi)的位移.
圖2-3-2 圖2-3-3 圖2-3-4
2.時(shí)間段Δt越小,各勻速直線運(yùn)動(dòng)位移和與勻變速直線運(yùn)動(dòng)位移之間的差值就越小.如圖2-3-3.
3.當(dāng)Δt→0時(shí),各矩形面積之和趨近于v-t圖象下面的面積.
4.如果把整個(gè)運(yùn)動(dòng)過(guò)程劃分得非常非常細(xì),很多很小矩形的面積之和就能準(zhǔn)確代表物體的位移了,位移的大小等于如圖2-3-4所示的梯形的面積.
根據(jù)同學(xué)們的結(jié)論利用課本圖2.3-2(丁圖)能否推導(dǎo)出勻變速直線運(yùn)動(dòng)的位移與時(shí)間的關(guān)系式?
學(xué)生分析推導(dǎo),寫(xiě)出過(guò)程:
S面積= (OC+AB)?OA
所以x= (v0+v)t
又v=v0+at
解得x=v0t+ at2.
點(diǎn)評(píng):培養(yǎng)學(xué)生利用數(shù)學(xué)圖象和物理知識(shí)推導(dǎo)物理規(guī)律的能力.
做一做:位移與時(shí)間的關(guān)系也可以用圖象表示,這種圖象叫做位移?時(shí)間圖象,即x-t圖象.運(yùn)用初中數(shù)學(xué)中學(xué)到的一次函數(shù)和二次函數(shù)知識(shí),你能畫(huà)出勻變速直線運(yùn)動(dòng)x=v0t+ at2的x-t圖象嗎?(v0、a是常數(shù))
學(xué)生在坐標(biāo)紙上作x-t圖象.
點(diǎn)評(píng):培養(yǎng)學(xué)生把數(shù)學(xué)知識(shí)應(yīng)用在物理中,體會(huì)物理與數(shù)學(xué)的密切關(guān)系,培養(yǎng)學(xué)生作關(guān)系式圖象的處理技巧.
(投影)進(jìn)一步提出問(wèn)題:如果一位同學(xué)問(wèn):“我們研究的是直線運(yùn)動(dòng),為什么畫(huà)出來(lái)的x-t圖象不是直線?”你應(yīng)該怎樣向他解釋?
學(xué)生思考討論,回答問(wèn)題:
位移圖象描述的是位移隨時(shí)間的變化規(guī)律,而直線運(yùn)動(dòng)是實(shí)際運(yùn)動(dòng).
知識(shí) 拓展
問(wèn)題展示:勻變速直線運(yùn)動(dòng)v-t關(guān)系為:v=v0+at
x-t關(guān)系為:x=v0t+ at2
若一質(zhì)點(diǎn)初速度為v0=0,則以上兩式變式如何?
學(xué)生思考回答:v=at x= at2
進(jìn)一步提出問(wèn)題:一質(zhì)點(diǎn)做初速度v0=0的勻加速直線運(yùn)動(dòng).
(1)1 s末、2 s末、3 s末……n s末的速度之比為多少?
(2)1 s內(nèi)、2 s內(nèi)、3 s內(nèi)……n s內(nèi)的位移之比為多少?
(3)第1 s內(nèi)、第2 s內(nèi)、第3 s內(nèi)……第n s內(nèi)的位移之比為多少?
(4)第1個(gè)x,第2個(gè)x,第3個(gè)x……第n個(gè)x相鄰相等位移的時(shí)間之比為多少?
點(diǎn)評(píng):通過(guò)該問(wèn)題加深對(duì)公式的理解,培養(yǎng)學(xué)生靈活運(yùn)用所學(xué)知識(shí)解決實(shí)際問(wèn)題的能力.
學(xué)生活動(dòng):思考,應(yīng)用公式解決上述四個(gè)問(wèn)題.
(1)由v=at知,v∝t,故1 s末、2 s末、3 s末……n s末的速度之比為:1∶2∶3∶…∶n
(2)由x= at2知x∝t2,故1 s內(nèi)、2 s內(nèi)、3 s內(nèi)……n s內(nèi)的位移之比為:1∶4∶9∶…∶n2
(3)第1 s內(nèi)位移為x1= a,第2 s內(nèi)位移為x2= a(22-12),第3 s內(nèi)位移為x3= a(32-22),第n s內(nèi)位移為xn= a[n2-(n-1 )2]
故第1 s內(nèi),第2 s內(nèi),第3 s內(nèi),…第n秒內(nèi)位移之比為:1∶3∶5∶…∶(2n-1).
(4)由x= at2知t∝ ,故x,2x,3x,…nx位移所用時(shí)間之比為:1∶ ∶ ∶…∶ .
第1個(gè)x,t1= ;第2個(gè)x,t2= ;第3個(gè)x,t3= ……第n個(gè)x,tn= ,故第1個(gè)x,第2個(gè)x,第3個(gè)x……第n個(gè)x相鄰相等位移的時(shí)間之比:1∶( -1)∶( - )∶…∶( - )
三、勻變速直線運(yùn)動(dòng)位移時(shí)間關(guān)系的應(yīng)用
引導(dǎo)學(xué)生由v=v0+at,x=v0t+ at2兩個(gè)公式導(dǎo)出兩個(gè)重要推論,再利用兩個(gè)推論解決實(shí)際問(wèn)題,加深對(duì)公式的理解,提高學(xué)生邏輯思維能力.[來(lái)源:學(xué).科.網(wǎng)]
問(wèn)題:在勻變速直線運(yùn)動(dòng)中連續(xù)相等的時(shí)間(T)內(nèi)的位移之差是否是恒量?若不是,寫(xiě)出之間的關(guān)系;若是,恒量是多少?
學(xué)生分析推導(dǎo) :xn=v0T+ aT2
xn+1 =(v0+aT)T+ aT2
Δx=xn+1-xn=aT2(即aT2為恒量).
展示論點(diǎn):在勻變速直線運(yùn)動(dòng)中,某段時(shí)間內(nèi)中間時(shí)刻的瞬時(shí)速度等于這段時(shí)間內(nèi)的平均速度.
學(xué)生分組,討論并證明.
證明:如圖2-3-5所示
圖2-3-5
= +
= +at
= = = +
所以 = .
例1一個(gè)做勻變速直線運(yùn)動(dòng)的質(zhì)點(diǎn),在連續(xù)相等的兩個(gè)時(shí)間間隔內(nèi),通過(guò)的位移分別是24 m和64 m,每一個(gè)時(shí)間間隔為4 s,求質(zhì)點(diǎn)的初速度和加速度.
解析:勻變速直線運(yùn)動(dòng)的規(guī)律可用多個(gè)公式描述,因而選擇不同的公式,所對(duì)應(yīng)的解法也不同.如:
解法一:基本公式法:畫(huà)出運(yùn)動(dòng)過(guò)程示意圖,如圖2-3-6所示,因題目中只涉及位移與時(shí)間,故選擇位移公式:
圖2-3-6
x1=vAt+ at2
x2=vA(2t)+ a(2t)2-( t+ at2)
將x1=24 m、x2=64 m,代入上式解得:
a=2.5 m/s2,vA=1 m/s.
解法二:用平均速度公式:
連續(xù)的兩段時(shí)間t內(nèi)的平均速度分別為:
=x1/t=24/4 m/s=6 m/s
=x2/t=64/4 m/s=16 m/s
B點(diǎn)是AC段的中間時(shí)刻,則
= ,
=
= = = m/s=11 m/s.
得 =1 m/s, =21 m/s
a= = m/s2=2.5 m/s2.
解法三:用推論式
由Δx=at2得
a= = m/s2=2.5 m/s2
再由x1= t+ at2
解得 =1 m/s.
答案:1 m/s 2.5 m/s2
說(shuō)明:1.運(yùn)動(dòng)學(xué)問(wèn)題的求解一般均有多種解法,進(jìn)行一題多解訓(xùn)練可以熟練地掌握運(yùn)動(dòng)學(xué)規(guī)律,提高靈活運(yùn)用知識(shí)的能力.從多種解法的對(duì)比中進(jìn)一步明確解題的基本思 路和方法,從而提高解題能力.
2.對(duì)一般的勻變速直線運(yùn)動(dòng)問(wèn)題,若出現(xiàn)相等 的時(shí)間間隔問(wèn)題,應(yīng)優(yōu)先考慮公式Δx=at2求解.
課堂訓(xùn)練
一個(gè)滑雪的人,從85 m長(zhǎng)的山坡上勻變速滑下,初速度是1.8 m/s,末速度是5.0 m/s,他通過(guò)這段山坡需要多長(zhǎng)時(shí)間?
分析:滑雪人的運(yùn)動(dòng)可以看作是勻加速直線運(yùn)動(dòng),可以利用勻變速直線運(yùn)動(dòng)的規(guī)律來(lái)求.已知量為初速度v0、末速度vt和位移x,待求量是時(shí)間t,此題可以用不同的方法求解.
解法一:利用公式vt=v0+at和x=v0t+ at2求解,
由公式vt=v0+at得,at=vt-v0,代入x=v0t+ at2有,
x=v0t+ ,故
t= = s=25 s.
解法二:利用平均速度的公式:
= 和x= t求解.
平均速度: = = =3.4 m/s
由x= t得,需要的時(shí)間:t= = =25 s.
關(guān)于剎車時(shí)的誤解問(wèn)題:
例2 在平直公路上,一汽車的速度為15 m/s,從某時(shí)刻開(kāi)始剎車,在阻力作用下,汽車以2 m/s2的加速度運(yùn)動(dòng),問(wèn)剎車后10 s末車離開(kāi)始剎車點(diǎn)多遠(yuǎn)?
分析:車做減速運(yùn)動(dòng),是否運(yùn)動(dòng)了10 s,這是本題必須考慮的.
初速度v0=15 m/s,a=-2 m/s2,設(shè)剎車時(shí)間為t0,則0=v0+at.
得:t= = s=7.5 s,即車運(yùn)動(dòng)7.5 s會(huì)停下,在后2.5 s內(nèi),車停止不動(dòng).
解析:設(shè)車實(shí)際運(yùn)動(dòng)時(shí)間為t,vt=0,a=-2 m/s2,由v=v0+at知t=7.5 s.
故x=v0t+ at2=56.25 m.
答案:56.25 m
思維拓展
如圖2-3-7所示,物體由高度相同、路徑不同的光滑斜面靜止下滑,物體通過(guò)兩條路徑的長(zhǎng)度相等,通過(guò)C點(diǎn)前后速度大小不變,問(wèn)物體沿哪一路徑先到達(dá)最低點(diǎn)?
圖2-37 圖2-3-8
合作交流:物體由A→B做初速度為零的勻加速直線運(yùn)動(dòng),到B點(diǎn)時(shí)速度大小為v1;物體由A→C做初速度為零的勻加速直線運(yùn)動(dòng),加速度比AB段的加速度大,由C→D做勻加速直線運(yùn)動(dòng),初速度大小等于AC段的末速度大小,加速度比AB段的加速度小,到D點(diǎn)時(shí)的速度大小也為v1(以后會(huì)學(xué)到),用計(jì)算的方法較為煩瑣,現(xiàn)畫(huà)出函數(shù)圖象進(jìn)行求解.
根據(jù)上述運(yùn)動(dòng)過(guò)程,畫(huà)出物體運(yùn)動(dòng)的v-t圖象如圖2-3-8所示,我們獲得一個(gè)新的信息,根據(jù)通過(guò)的位移相等知道兩條圖線與橫軸所圍“面積”相等,所以沿A→C→D路徑滑下用的時(shí)間較短,故先到達(dá)最低點(diǎn).
提示:用v-t圖象分析問(wèn)題時(shí),要特別注意圖線的斜率、與t軸所夾面積的物理意義.(注意此例中縱軸表示的是速率)
課堂訓(xùn)練
“適者生存”是自然界中基本的法則之一,獵豹要生存必須獲得足夠的食物,獵豹的食物來(lái)源中,羚羊是不可缺少的.假設(shè)羚羊從靜止開(kāi)始奔跑,經(jīng)50 m能加速到最大速度25 m/s,并能維持較長(zhǎng)的時(shí)間;獵豹從靜止開(kāi)始奔跑,經(jīng)60 m能加速到最大速度30 m/s,以后只能維持這個(gè)速度4.0 s.設(shè)獵豹在某次尋找食物時(shí),距離羚羊30 m時(shí)開(kāi)始攻擊,羚羊則在獵豹開(kāi)始攻擊后1.0 s才開(kāi)始逃跑,假定羚羊和獵豹在加速階段分別做勻加速直線運(yùn)動(dòng),且均沿同一直線奔跑,問(wèn)獵豹能否成功捕獲羚羊?(情景導(dǎo)入問(wèn)題)
解答:羚羊在加速奔跑中的加速度應(yīng)為:
a1= = ①
x= a1t2 ②
由以上二式可得:a1= =6.25 m/s2,同理可得出獵豹 在加速過(guò)程中的加速度a2= = =7.5 m/s2.羚羊加速過(guò)程經(jīng)歷的時(shí)間t1= =4 s.獵豹加速過(guò)程經(jīng)歷的時(shí)間t2= =4 s.
如果獵豹能夠成功捕獲羚羊,則獵豹必須在減速前追到羚羊,在此過(guò)程中獵豹的位移為:x2=x2+v2t=(60+30×4) m=180 m,羚羊在獵豹減速前的位移為:x1=x1+v1t′=(50+25×3) m=125 m,因?yàn)閤2-x1=(180-125) m=55 m>30 m,所以獵豹能夠成功捕獲羚羊.
課堂小結(jié)
本節(jié)重點(diǎn)學(xué)習(xí)了對(duì)勻變速直線運(yùn)動(dòng)的位移?時(shí)間公式x=v0t+ at2的推導(dǎo),并學(xué)習(xí)了運(yùn)用該公式解決 實(shí)際問(wèn)題.在利用公式求解時(shí),一定要注意公式的矢量性問(wèn)題.一般情況下,以初速度方向?yàn)檎较颍划?dāng)a與v0方向相同時(shí),a為正值,公式即反映了勻加速直線運(yùn)動(dòng)的速度和位移隨時(shí)間的變化規(guī)律;當(dāng)a與v0方向相反時(shí),a為負(fù)值,公式反映了勻減速直線運(yùn)動(dòng)的速度和位移隨時(shí)間的變化規(guī)律.代入公式求解時(shí),與正方向相同的代入正值,與正方向相反的物理量應(yīng)代入負(fù)值.
布置作業(yè)
1.教材第40頁(yè)“問(wèn)題與練習(xí)”第1、2題.
2.利用課余時(shí)間實(shí)際操作教材第40頁(yè)“做一做”的內(nèi)容.
板書(shū)設(shè)計(jì)
3 勻變速直線運(yùn)動(dòng)的位移和時(shí)間的關(guān)系
位移與時(shí)間的關(guān)系
活動(dòng)與探究
課題:用一把直尺可以測(cè)定你的反應(yīng)時(shí)間.
方法:請(qǐng)另一個(gè)人用兩個(gè)手指捏住直尺的頂端,你用一只手在直尺的下端作捏住直尺的準(zhǔn)備,但手不能碰到直尺,記下這時(shí)手指在直尺上的位置;當(dāng)你看到另一個(gè)人放開(kāi)直尺時(shí),你立即去捏直尺,記下你捏住直尺的位置 ,就可以求出你的反應(yīng)時(shí)間.(用該尺測(cè)反應(yīng)時(shí)間時(shí),讓手指先對(duì)準(zhǔn)零刻度處)試說(shuō)明其原理.
提示:直尺做v0=0、a=g的勻加速直線運(yùn)動(dòng),故x= .
習(xí)題詳解
1.解答:初速度v0=36 km/h=10 m/s,加速度a=0.2 m/s2,時(shí)間t=30 s,根據(jù)s=v0t+ at2得s=390 m.
根據(jù)v=v0+at得v=16 m/s.
2.解答:初速度v0=18 m/s,時(shí)間t=3 s,位移s=36 m.根據(jù)s=v0t+ at2得a= =-4 m/s2.
3.解答:x= at2x∝a
即位移之比等于加速度之比.
設(shè)計(jì)點(diǎn)評(píng)
本節(jié)是探究勻變速直線運(yùn)動(dòng)的位移與時(shí)間的關(guān)系,本教學(xué)設(shè)計(jì)先用微分思想推導(dǎo)出位移應(yīng)是v-t圖象中圖線與t軸所夾圖形的面積,然后根據(jù)求圖形面積,推導(dǎo)出了位移?時(shí)間關(guān)系.這種分析方法是把過(guò)程先微分后再累加(積分)的定積分思想來(lái)解決問(wèn)題的方法,在以后的學(xué)習(xí)中經(jīng)常用到.因此本教學(xué)設(shè)計(jì)側(cè)重了極限思想的滲透,使學(xué)生接受過(guò)程中不感到有困難.在滲透極限的探究過(guò)程中,重點(diǎn)突出了數(shù)、形結(jié)合的思路.
本文來(lái)自:逍遙右腦記憶 http://m.portlandfoamroofing.com/gaoer/75885.html
相關(guān)閱讀: