高中數(shù)學(xué)12組答題模板!掌握了,能讓你高考數(shù)學(xué)140+!

編輯: 逍遙路 關(guān)鍵詞: 高考復(fù)習(xí) 來(lái)源: 高中學(xué)習(xí)網(wǎng)

選擇填空題

1.易錯(cuò)點(diǎn)歸納:

九大模塊易混淆難記憶考點(diǎn)分析,如概率和頻率概念混淆、數(shù)列求和公式記憶錯(cuò)誤等,強(qiáng)化基礎(chǔ)知識(shí)點(diǎn)記憶,避開因?yàn)橹R(shí)點(diǎn)失誤造成的客觀性解題錯(cuò)誤。

針對(duì)審題、解題思路不嚴(yán)謹(jǐn)如集合題型未考慮空集情況、函數(shù)問(wèn)題未考慮定義域等主觀性因素造成的失誤進(jìn)行專項(xiàng)訓(xùn)練。

2.答題方法:

選擇題十大速解方法:

排除法、增加條件法、以小見大法、極限法、關(guān)鍵點(diǎn)法、對(duì)稱法、小結(jié)論法、歸納法、感覺(jué)法、分析選項(xiàng)法;

填空題四大速解方法:

直接法、特殊化法、數(shù)形結(jié)合法、等價(jià)轉(zhuǎn)化法。

解答題

專題一、三角變換與三角函數(shù)的性質(zhì)問(wèn)題

1.解題路線圖

①不同角化同角

②降冪擴(kuò)角

③化f(x)=Asin(ωx+φ)+h

④結(jié)合性質(zhì)求解。

2.構(gòu)建答題模板

①化簡(jiǎn):三角函數(shù)式的化簡(jiǎn),一般化成y=Asin(ωx+φ)+h的形式,即化為"一角、一次、一函數(shù)"的形式。

②整體代換:將ωx+φ看作一個(gè)整體,利用y=sin x,y=cos x的性質(zhì)確定條件。

③求解:利用ωx+φ的范圍求條件解得函數(shù)y=Asin(ωx+φ)+h的性質(zhì),寫出結(jié)果。

④反思:反思回顧,查看關(guān)鍵點(diǎn),易錯(cuò)點(diǎn),對(duì)結(jié)果進(jìn)行估算,檢查規(guī)范性。

專題二、解三角形問(wèn)題

1.解題路線圖

(1) ①化簡(jiǎn)變形;②用余弦定理轉(zhuǎn)化為邊的關(guān)系;③變形證明。

(2) ①用余弦定理表示角;②用基本不等式求范圍;③確定角的取值范圍。

2.構(gòu)建答題模板

①定條件:即確定三角形中的已知和所求,在圖形中標(biāo)注出來(lái),然后確定轉(zhuǎn)化的方向。

②定工具:即根據(jù)條件和所求,合理選擇轉(zhuǎn)化的工具,實(shí)施邊角之間的互化。

③求結(jié)果。

④再反思:在實(shí)施邊角互化的時(shí)候應(yīng)注意轉(zhuǎn)化的方向,一般有兩種思路:一是全部轉(zhuǎn)化為邊之間的關(guān)系;二是全部轉(zhuǎn)化為角之間的關(guān)系,然后進(jìn)行恒等變形。

專題三、數(shù)列的通項(xiàng)、求和問(wèn)題

1.解題路線圖

①先求某一項(xiàng),或者找到數(shù)列的關(guān)系式。

②求通項(xiàng)公式。

③求數(shù)列和通式。

2.構(gòu)建答題模板

①找遞推:根據(jù)已知條件確定數(shù)列相鄰兩項(xiàng)之間的關(guān)系,即找數(shù)列的遞推公式。

②求通項(xiàng):根據(jù)數(shù)列遞推公式轉(zhuǎn)化為等差或等比數(shù)列求通項(xiàng)公式,或利用累加法或累乘法求通項(xiàng)公式。

③定方法:根據(jù)數(shù)列表達(dá)式的結(jié)構(gòu)特征確定求和方法(如公式法、裂項(xiàng)相消法、錯(cuò)位相減法、分組法等)。

④寫步驟:規(guī)范寫出求和步驟。

⑤再反思:反思回顧,查看關(guān)鍵點(diǎn)、易錯(cuò)點(diǎn)及解題規(guī)范。

專題四、利用空間向量求角問(wèn)題

1.解題路線圖

①建立坐標(biāo)系,并用坐標(biāo)來(lái)表示向量。

②空間向量的坐標(biāo)運(yùn)算。

③用向量工具求空間的角和距離。

2.構(gòu)建答題模板

①找垂直:找出(或作出)具有公共交點(diǎn)的三條兩兩垂直的直線。

②寫坐標(biāo):建立空間直角坐標(biāo)系,寫出特征點(diǎn)坐標(biāo)。

③求向量:求直線的方向向量或平面的法向量。

④求夾角:計(jì)算向量的夾角。

⑤得結(jié)論:得到所求兩個(gè)平面所成的角或直線和平面所成的角。

專題五、圓錐曲線中的范圍問(wèn)題

1.解題路線圖

①設(shè)方程。

②解系數(shù)。

③得結(jié)論。

2.構(gòu)建答題模板

①提關(guān)系:從題設(shè)條件中提取不等關(guān)系式。

②找函數(shù):用一個(gè)變量表示目標(biāo)變量,代入不等關(guān)系式。

③得范圍:通過(guò)求解含目標(biāo)變量的不等式,得所求參數(shù)的范圍。

④再回顧:注意目標(biāo)變量的范圍所受題中其他因素的制約。

專題六、解析幾何中的探索性問(wèn)題

1.解題路線圖

①一般先假設(shè)這種情況成立(點(diǎn)存在、直線存在、位置關(guān)系存在等)

②將上面的假設(shè)代入已知條件求解。

③得出結(jié)論。

2.構(gòu)建答題模板

①先假定:假設(shè)結(jié)論成立。

②再推理:以假設(shè)結(jié)論成立為條件,進(jìn)行推理求解。

③下結(jié)論:若推出合理結(jié)果,經(jīng)驗(yàn)證成立則肯。 定假設(shè);若推出矛盾則否定假設(shè)。

④再回顧:查看關(guān)鍵點(diǎn),易錯(cuò)點(diǎn)(特殊情況、隱含條件等),審視解題規(guī)范性。

專題七、離散型隨機(jī)變量的均值與方差

1.解題路線圖

(1)①標(biāo)記事件;②對(duì)事件分解;③計(jì)算概率。

(2)①確定ξ取值;②計(jì)算概率;③得分布列;④求數(shù)學(xué)期望。

2.構(gòu)建答題模板

①定元:根據(jù)已知條件確定離散型隨機(jī)變量的取值。

②定性:明確每個(gè)隨機(jī)變量取值所對(duì)應(yīng)的事件。

③定型:確定事件的概率模型和計(jì)算公式。

④計(jì)算:計(jì)算隨機(jī)變量取每一個(gè)值的概率。

⑤列表:列出分布列。

⑥求解:根據(jù)均值、方差公式求解其值。

專題八、函數(shù)的單調(diào)性、極值、最值問(wèn)題

1.解題路線圖

(1)①先對(duì)函數(shù)求導(dǎo);②計(jì)算出某一點(diǎn)的斜率;③得出切線方程。

(2)①先對(duì)函數(shù)求導(dǎo);②談?wù)搶?dǎo)數(shù)的正負(fù)性;③列表觀察原函數(shù)值;④得到原函數(shù)的單調(diào)區(qū)間和極值。

2.構(gòu)建答題模板

①求導(dǎo)數(shù):求f(x)的導(dǎo)數(shù)f′(x)。(注意f(x)的定義域)

②解方程:解f′(x)=0,得方程的根。

③列表格:利用f′(x)=0的根將f(x)定義域分成若干個(gè)小開區(qū)間,并列出表格。

④得結(jié)論:從表格觀察f(x)的單調(diào)性、極值、最值等。

⑤再回顧:對(duì)需討論根的大小問(wèn)題要特殊注意,另外觀察f(x)的間斷點(diǎn)及步驟規(guī)范性。


本文來(lái)自:逍遙右腦記憶 http://m.portlandfoamroofing.com/gaokao/1333119.html

相關(guān)閱讀:物理的岔路口:新高考改革后,趨利選擇引發(fā)物理“棄考”潮