等邊三角形2013年中考數(shù)學(xué)題匯編

編輯: 逍遙路 關(guān)鍵詞: 九年級(jí) 來源: 高中學(xué)習(xí)網(wǎng)


13、(2013• 德州)如圖,在正方形ABCD中,邊長為2的等邊三角形AEF的頂點(diǎn)E、F分別在BC和CD上,下列結(jié)論:
①CE=CF;②∠AEB=75°;③BE+DF=EF;④S正方形ABCD=2+ .
其中正確的序號(hào)是、佗冖堋。ò涯阏J(rèn)為正確的都填上).

考點(diǎn):正方形的性質(zhì);全等三角形的判定與性質(zhì);等邊三角形的性質(zhì).
分析:根據(jù)三角形的全等的知識(shí)可以判斷①的正誤;根據(jù)角角之間的數(shù)量關(guān)系,以及三角形內(nèi)角和為180°判斷②的正誤;根據(jù)線段垂直平分線的知識(shí)可以判斷③的正確,利用解三角形求正方形的面積等知識(shí)可以判斷④的正誤.
解答:解:∵四邊形ABCD是正方形,
∴AB=AD,
∵△AEF是等邊三角形,
∴AE=AF,
∵在Rt△ABE和Rt△ADF中,
,
∴Rt△ABE≌Rt△ADF(HL),
∴BE=DF,
∵BC=DC,
∴BC?BE=CD?DF,
∴CE=CF,
∴①說法正確;
∵CE=CF,
∴△ECF是等腰直角三角形,
∴∠CEF=45°,
∵∠AEF=60°,
∴∠AEB=75°,
∴②說法正確;
如圖,連接AC,交EF于G點(diǎn),
∴AC⊥EF,且AC平分EF,
∵∠CAD≠∠DAF,
∴DF≠FG,
∴BE+DF≠EF,
∴③說法錯(cuò)誤;
∵EF=2,
∴CE=CF= ,
設(shè)正方形的邊長為a,
在Rt△ADF中,
a2+(a? )2=4,
解得a= ,
則a2=2+ ,
S正方形ABCD=2+ ,
④說法正確,
故答案為①②④.

點(diǎn)評:本題主要考查正方形的性質(zhì)的知識(shí)點(diǎn),解答本題的關(guān)鍵是熟練掌握全等三角形的證明以及輔助線的正確作法,此題難度不大,但是有一點(diǎn)麻煩.

14、(2013•黃岡)已知△ABC為等邊三角形,BD為中線,延長BC至E,使CE=CD=1,連接DE,則DE=   .

考點(diǎn):等邊三角形的性質(zhì);等腰三角形的判定與性質(zhì).3481324
分析:根據(jù)等腰三角形和三角形外角性質(zhì)求出BD=DE,求出BC,在Rt△△BDC中,由勾股定理求出BD即可.
解答:解:∵△ABC為等邊三角形,
∴∠ABC=∠ACB=60°,AB=BC,
∵BD為中線,
∴∠DBC= ∠ABC=30°,
∵CD=CE,
∴∠E=∠CDE,
∵∠E+∠CDE=∠ACB,
∴∠E=30°=∠DBC,
∴BD=DE,
∵BD是AC中線,CD=1,
∴AD=DC=1,
∵△ABC是等邊三角形,
∴BC=AC=1+1=2,BD⊥AC,
在Rt△△BDC中,由勾股定理得:BD= = ,
即DE=BD= ,
故答案為: .
點(diǎn)評:本題考查了等邊三角形性質(zhì),勾股定理,等腰三角形性質(zhì),三角形的外角性質(zhì)等知識(shí)點(diǎn)的應(yīng)用,關(guān)鍵是求出DE=BD和求出BD的長.

15、(2013•黔西南州)如圖,已知△ABC是等邊三角形,點(diǎn)B、C、D、E在同一直線上,且CG=CD,DF=DE,則∠E= 15 度.

考點(diǎn):等邊三角形的性質(zhì);三角形的外角性質(zhì);等腰三角形的性質(zhì).
分析:根據(jù)等邊三角形三個(gè)角相等,可知∠ACB=60°,根據(jù)等腰三角形底角相等即可得出∠E的度數(shù).
解答:解:∵△ABC是等邊三角形,
∴∠ACB=60°,∠ACD=120°,
∵CG=CD,
∴∠CDG=30°,∠FDE=150°,
∵DF=DE,
∴∠E=15°.
故答案為:15.
點(diǎn)評:本題考查了等邊三角形的性質(zhì),互補(bǔ)兩角和為180°以及等腰三角形的性質(zhì),難度適中.

16、(2013年廣東湛江)如圖,所有正三角形的一邊平行于 軸,一頂點(diǎn)在 軸上.從內(nèi)到外,它們的邊長依次為 ,頂點(diǎn)依次用 表示,其中 與 軸、底邊 與 、 與 、 均相距一個(gè)單位,則頂點(diǎn) 的坐標(biāo)是 , 的坐標(biāo)是 .
解析:考查正三角形的相關(guān)知識(shí)及找規(guī)律的能力。由圖知, 的縱坐標(biāo)為:
, ,而 的橫坐標(biāo)為: ,由題意知, 的縱坐標(biāo)為 , ,容易發(fā)現(xiàn) 、 、 、 、 、 這些點(diǎn)在第四象限,橫縱坐標(biāo)互為相反數(shù), 、 、 、 、 、 的下標(biāo)2、5、7、 、92、 有規(guī)律: , 是第31個(gè)正三角形(從里往外)的右端點(diǎn),

17、(2013福省福州19)如圖,在平面直角坐標(biāo)系xOy中,點(diǎn)A的坐標(biāo)為(?2,0),等邊三角形AOC經(jīng)過平移或軸對稱或旋轉(zhuǎn)都可以得到△OBD.
(1)△AOC沿x軸向右平移得到△OBD,則平移的距離是 個(gè)單位長度;△AOC與△BOD關(guān)于直線對稱,則對稱軸是 ;△AOC繞原點(diǎn)O順時(shí)針旋轉(zhuǎn)得到△DOB,則旋轉(zhuǎn)角度可以是 度;
(2)連結(jié)AD,交OC于點(diǎn)E,求∠AEO的度數(shù).

考點(diǎn):旋轉(zhuǎn)的性質(zhì);等邊三角形的性質(zhì);軸對稱的性質(zhì);平移的性質(zhì).
專題:.
分析:(1)由點(diǎn)A的坐標(biāo)為(?2,0),根據(jù)平移的性質(zhì)得到△AOC沿x軸向右平移2個(gè)單位得到△OBD,則△AOC與△BOD關(guān)于y軸對稱;根據(jù)等邊三角形的性質(zhì)得∠AOC=∠BOD=60°,則∠AOD=120°,根據(jù)旋轉(zhuǎn)的定義得△AOC繞原點(diǎn)O順時(shí)針旋轉(zhuǎn)120°得到△DOB;
(2)根據(jù)旋轉(zhuǎn)的性質(zhì)得到OA=OD,而∠AOC=∠BOD=60°,得到∠DOC=60°,所以O(shè)E為等腰△AOD的頂角的平分線,根據(jù)等腰三角形的性質(zhì)得到OE垂直平分AD,則∠AEO=90°.
解答:解:(1)∵點(diǎn)A的坐標(biāo)為(?2,0),
∴△AOC沿x軸向右平移2個(gè)單位得到△OBD;
∴△AOC與△BOD關(guān)于y軸對稱;
∵△AOC為等邊三角形,
∴∠AOC=∠BOD=60°,
∴∠AOD=120°,
∴△AOC繞原點(diǎn)O順時(shí)針旋轉(zhuǎn)120°得到△DOB.
(2)如圖,∵等邊△AOC繞原點(diǎn)O順時(shí)針旋轉(zhuǎn)120°得到△DOB,
∴OA=OD,
∵∠AOC=∠BOD=60°,
∴∠DOC=60°,
即OE為等腰△AOD的頂角的平分線,
∴OE垂直平分AD,
∴∠AEO=90°.
故答案為2;y軸;120.

點(diǎn)評:本題考查了旋轉(zhuǎn)的性質(zhì):旋轉(zhuǎn)前后兩圖形全等;對應(yīng)點(diǎn)到旋轉(zhuǎn)中心的距離相等;對應(yīng)點(diǎn)與旋轉(zhuǎn)中心的連線段的夾角等于旋轉(zhuǎn)角.也考查了等邊三角形的性質(zhì)、軸對稱的性質(zhì)以及平移的性質(zhì). 
18、(2013•湖州)如圖,已知P是⊙O外一點(diǎn),PO交圓O于點(diǎn)C,OC=CP=2,弦AB⊥OC,劣弧AB的度數(shù)為120°,連接PB.
(1)求BC的長;
(2)求證:PB是⊙O的切線.

考點(diǎn):切線的判定;等邊三角形的判定與性質(zhì);垂徑定理.
分析:(1)首先連接OB,由弦AB⊥OC,劣弧AB的度數(shù)為120°,易證得△OBC是等邊三角形,則可求得BC的長;
(2)由OC=CP=2,△OBC是等邊三角形,可求得BC=CP,即可得∠P=∠CBP,又由等邊三角形的性質(zhì),∠OBC=60°,∠CBP=30°,則可證得OB⊥BP,繼而證得PB是⊙O的切線.
解答:(1)解:連接OB,
∵弦AB⊥OC,劣弧AB的度數(shù)為120°,
∴弧BC與弧AC的度數(shù)為:60°,
∴∠BOC=60°,
∵OB=OC,
∴△OBC是等邊三角形,
∴BC=OC=2;

(2)證明:∵OC=CP,BC=OC,
∴BC=CP,
∴∠CBP=∠CPB,
∵△OBC是等邊三角形,
∴∠OBC=∠OCB=60°,
∴∠CBP=30°,
∴∠OBP=∠CBP+∠OBC=90°,
∴OB⊥BP,
∵點(diǎn)B在⊙O上,
∴PB是⊙O的切線.

點(diǎn)評:此題考查了切線的判定、等邊三角形的判定與性質(zhì)以及等腰三角形的性質(zhì).此題難度適中,注意掌握輔助線的作法,注意數(shù)形結(jié)合思想的應(yīng)用.
19、(2013•萊蕪)如圖,在Rt△ABC中,∠C=90°,以AC為一邊向外作等邊三角形ACD,點(diǎn)E為AB的中點(diǎn),連結(jié)DE.
(1)證明DE∥CB;
(2)探索AC與AB滿足怎樣的數(shù)量關(guān)系時(shí),四邊形DCBE是平行四邊形.

考點(diǎn):平行四邊形的判定;全等三角形的判定與性質(zhì);等邊三角形的性質(zhì).
分析:(1)首先連接CE,根據(jù)直角三角形的性質(zhì)可得CE=AB=AE,再根據(jù)等邊三角形的性質(zhì)可得AD=CD,然后證明△ADE≌△CDE,進(jìn)而得到∠ADE=∠CDE=30°,再有∠DCB=150°可證明DE∥CB;
(2)當(dāng)AC= 或AB=2AC時(shí),四邊形DCBE是平行四邊形.若四邊形DCBE是平行四邊形,則DC∥BE,∠DCB+∠B=180°進(jìn)而得到∠B=30°,再根據(jù)三角函數(shù)可推出AC= 或AB=2AC.
解答:(1)證明:連結(jié)CE.
∵點(diǎn)E為Rt△ACB的斜邊AB的中點(diǎn),
∴CE=AB=AE.
∵△ACD是等邊三角形,
∴AD=CD.
在△ADE與△CDE中, ,
∴△ADE≌△CDE(SSS),
∴∠ADE=∠CDE=30°.
∵∠DCB=150°,
∴∠EDC+∠DCB=180°.
∴DE∥CB.

(2)解:∵∠DCB=150°,若四邊形DCBE是平行四邊形,則DC∥BE,∠DCB+∠B=180°.
∴∠B=30°.
在Rt△ACB中,sinB= ,sin30°= ,AC= 或AB=2AC.
∴當(dāng)AC= 或AB=2AC時(shí),四邊形DCBE是平行四邊形.

點(diǎn)評:此題主要考查了平行線的判定、全等三角形的判定與性質(zhì),以及平行四邊形的判定,關(guān)鍵是掌握直角三角形的性質(zhì),以及等邊三角形的性質(zhì).
20、(2013•衢州)【提出問題】
(1)如圖1,在等邊△ABC中,點(diǎn)是BC上的任意一點(diǎn)(不含端點(diǎn)B、C),連結(jié)A,以A為邊作等邊△AN,連結(jié)CN.求證:∠ABC=∠ACN.
【類比探究】
(2)如圖2,在等邊△ABC中,點(diǎn)是BC延長線上的任意一點(diǎn)(不含端點(diǎn)C),其它條件不變,(1)中結(jié)論∠ABC=∠ACN還成立嗎?請說明理由.
【拓展延伸】
(3)如圖3,在等腰△ABC中,BA=BC,點(diǎn)是BC上的任意一點(diǎn)(不含端點(diǎn)B、C),連結(jié)A,以A為邊作等腰△AN,使頂角∠AN=∠ABC.連結(jié)CN.試探究∠ABC與∠ACN的數(shù)量關(guān)系,并說明理由.

考點(diǎn):相似三角形的判定與性質(zhì);全等三角形的判定與性質(zhì);等邊三角形的性質(zhì).
分析:(1)利用SAS可證明△BA≌△CAN,繼而得出結(jié)論;
(2)也可以通過證明△BA≌△CAN,得出結(jié)論,和(1)的思路完全一樣.
(3)首先得出∠BAC=∠AN,從而判定△ABC∽△AN,得到 = ,根據(jù)∠BA=∠BAC?∠AC,∠CAN=∠AN?∠AC,得到∠BA=∠CAN,從而判定△BA∽△CAN,得出結(jié)論.
解答:(1)證明:∵△ABC、△AN是等邊三角形,

∴AB=AC,A=AN,∠BAC=∠AN=60°,
∴∠BA=∠CAN,
∵在△BA和△CAN中,

∴△BA≌△CAN(SAS),
∴∠ABC=∠ACN.

(2)解:結(jié)論∠ABC=∠ACN仍成立.
理由如下:∵△ABC、△AN是等邊三角形,
∴AB=AC,A=AN,∠BAC=∠AN=60°,
∴∠BA=∠CAN,
∵在△BA和△CAN中,

∴△BA≌△CAN(SAS),
∴∠ABC=∠ACN.

(3)解:∠ABC=∠ACN.
理由如下:∵BA=BC,A=N,頂角∠ABC=∠AN,
∴底角∠BAC=∠AN,
∴△ABC∽△AN,
∴ = ,
又∵∠BA=∠BAC?∠AC,∠CAN=∠AN?∠AC,
∴∠BA=∠CAN,
∴△BA∽△CAN,
∴∠ABC=∠ACN.
點(diǎn)評:本題考查了相似三角形的判定與性質(zhì)、全等三角形的判定與性質(zhì),解答本題的關(guān)鍵是仔細(xì)觀察圖形,找到全等(相似)的條件,利用全等(相似)的性質(zhì)證明結(jié)論.




本文來自:逍遙右腦記憶 http://m.portlandfoamroofing.com/chusan/173661.html

相關(guān)閱讀: