解圓錐曲線問題一般方法(上)

編輯: 逍遙路 關(guān)鍵詞: 高二學(xué)習(xí)指導(dǎo) 來源: 高中學(xué)習(xí)網(wǎng)




 很多同學(xué)解圓錐曲線往往有難度,不知如何下手,其實(shí)圓錐曲線問題有方法。下面為大家總結(jié)圓錐曲線問題常用解題方法,供大家參考,希望對大家的學(xué)習(xí)有幫助。

  【學(xué)習(xí)要點(diǎn)】

  解圓錐曲線問題常用以下方法:

  1、定義法

  (1)橢圓有兩種定義。第一定義中,r1+r2=2a。第二定義中,r1=ed1 r2=ed2。

  (2)雙曲線有兩種定義。第一定義中, ,當(dāng)r1>r2時,注意r2的最小值為c-a:第二定義中,r1=ed1,r2=ed2,尤其應(yīng)注意第二定義的應(yīng)用,常常將 半徑與“點(diǎn)到準(zhǔn)線距離”互相轉(zhuǎn)化。

  (3)拋物線只有一種定義,而此定義的作用較橢圓、雙曲線更大,很多拋物線問題用定義解決更直接簡明。

  2、韋達(dá)定理法

  因直線的方程是一次的,圓錐曲線的方程是二次的,故直線與圓錐曲線的問題常轉(zhuǎn)化為方程組關(guān)系問題,最終轉(zhuǎn)化為一元二次方程問題,故用韋達(dá)定理及判別式是解決圓錐曲線問題的重點(diǎn)方法之一,尤其是弦中點(diǎn)問題,弦長問題,可用韋達(dá)定理直接解決,但應(yīng)注意不要忽視判別式的作用。

  3、解析幾何的運(yùn)算中,常設(shè)一些量而并不解解出這些量,利用這些量過渡使問題得以解決,這種方法稱為“設(shè)而不求法”。設(shè)而不求法對于直線與圓錐曲線相交而產(chǎn)生的弦中點(diǎn)問題,常用“點(diǎn)差法”,即設(shè)弦的兩個端點(diǎn)A(x1,y1),B(x2,y2),弦AB中點(diǎn)為M(x0,y0),將點(diǎn)A、B坐標(biāo)代入圓錐曲線方程,作差后,產(chǎn)生弦中點(diǎn)與弦斜率的關(guān)系,這是一種常見的“設(shè)而不求”法,具體有:

 


本文來自:逍遙右腦記憶 http://m.portlandfoamroofing.com/gaoer/162815.html

相關(guān)閱讀:高二語文學(xué)習(xí):高二語文詠懷八十二首其一賞析

閻楀牊娼堟竟鐗堟閿涙碍婀伴弬鍥у敶鐎瑰湱鏁辨禍鎺曚粓缂冩垹鏁ら幋鐤殰閸欐垼纭€閻氼噯绱濈拠銉︽瀮鐟欏倻鍋f禒鍛敩鐞涖劋缍旈懓鍛拱娴滄亽鈧倹婀扮粩娆庣矌閹绘劒绶垫穱鈩冧紖鐎涙ê鍋嶇粚娲?閺堝秴濮熼敍灞肩瑝閹枫儲婀侀幍鈧張澶嬫綀閿涘奔绗夐幍鎸庡閻╃ǹ鍙у▔鏇炵伐鐠愶絼鎹㈤妴鍌氼洤閸欐垹骞囬張顒傜彲閺堝绉圭€氬本濡辩悮顓濋暅閺夛拷/鏉╂繃纭舵潻婵婎潐閻ㄥ嫬鍞寸€圭櫢绱濈拠宄板絺闁線鍋栨禒鎯板殾 bjb@jiyifa.com 娑撶偓濮ら敍灞肩缂佸繑鐓$€圭儑绱濋張顒傜彲鐏忓棛鐝涢崚璇插灩闂勩們鈧拷