生活中的優(yōu)化問(wèn)題舉例

編輯: 逍遙路 關(guān)鍵詞: 高二 來(lái)源: 高中學(xué)習(xí)網(wǎng)
目標(biāo):
1.要細(xì)致分析實(shí)際問(wèn)題中各個(gè)量之間的關(guān)系,正確設(shè)定所求最大值或最小值的變量 與自變量 ,把實(shí)際問(wèn)題轉(zhuǎn)化為數(shù)學(xué)問(wèn)題,即列出函數(shù)解析式 ,根據(jù)實(shí)際問(wèn)題確定函數(shù) 的定義域;
2.要熟練掌握應(yīng)用導(dǎo)數(shù)法求函數(shù)最值的步驟,細(xì)心運(yùn)算,正確合理地做答.
重點(diǎn):求實(shí)際問(wèn)題的最值時(shí),一定要從問(wèn)題的實(shí)際意義去考察,不符合實(shí)際意義的理論值應(yīng)予舍去。
難點(diǎn):在實(shí)際問(wèn)題中,有 常常僅解到一個(gè)根,若能判斷函數(shù)的最大(小)值在 的變化區(qū)間內(nèi)部得到,則這個(gè)根處的函數(shù)值就是所求的最大(小)值。
方法:嘗試性教學(xué)
教學(xué)過(guò)程:
前置測(cè)評(píng):
(1)求曲線y=x2+2在點(diǎn)P(1,3)處的切線方程.
(2)若曲線y=x3上某點(diǎn)切線的斜率為3,求此點(diǎn)的坐標(biāo)。
【情景引入】 生活中經(jīng)常遇到求利潤(rùn)最大、用料最省、效率最高等問(wèn)題,這些問(wèn)題通常稱為優(yōu)化問(wèn)題.通過(guò)前面的學(xué)習(xí),我們知道,導(dǎo)數(shù)是求函數(shù)最大(。┲档挠辛ぞ撸@一節(jié),我們利用導(dǎo)數(shù),解決一些生活中的優(yōu)化問(wèn)題
例1.汽油的使用效率何時(shí)最高
材料:隨著我國(guó)經(jīng)濟(jì)高速發(fā)展,能源短缺的矛盾突現(xiàn),建設(shè)節(jié)約性社會(huì)是眾望所歸,F(xiàn)實(shí)生活中,汽車作為代步工具,與我們的生活密切相關(guān)。眾所周知,汽車的每小時(shí)耗油量與汽車的速度有一定的關(guān)系。如何使汽車的汽油使用效率最高(汽油使有效率最高是指每千米路程的汽油耗油量最少)呢?
通過(guò)大量統(tǒng)計(jì)分析,得到汽油每小時(shí)的消耗量 g(L/h)與汽車行駛的平均速度v(km/h)之間的函數(shù)關(guān)系g=f(v) 如圖3.4-1,根據(jù)圖象中的信息,試說(shuō)出汽車的速度v 為多少時(shí),汽油的使用效率最高?
解:因?yàn)镚=w/s=(w/t)/(s/t)=g/v
這樣,問(wèn)題就轉(zhuǎn)化為求g/v的最小值,從圖象上看,g/v
表示經(jīng)過(guò)原點(diǎn)與曲線上點(diǎn)(v,g)的直線的斜率。繼續(xù)觀察圖像,我們發(fā)現(xiàn),當(dāng)直線與曲線相切時(shí),其斜率最小,在此點(diǎn)處速度約為90km/h,從樹枝上看,每千米的耗油量就是途中切線的斜率,即f’(90),約為0.67L.
例2.磁盤的最大存儲(chǔ)量問(wèn)題
【背景知識(shí)】計(jì)算機(jī)把數(shù)據(jù)存儲(chǔ)在磁盤上。磁盤是帶有磁性介質(zhì)的圓盤,并有操作系統(tǒng)將其格式化成磁道和扇區(qū)。磁道是指不同半徑所構(gòu)成的同心軌道,扇區(qū)是指被同心角分割所成的扇形區(qū)域。磁道上的定長(zhǎng)弧段可作為基本存儲(chǔ)單元,根據(jù)其磁化與否可分別記錄數(shù)據(jù)0或1,這個(gè)基本單元通常被稱為比特(bit)。
為了保障磁盤的分辨率,磁道之間的寬度必需大于 ,每比特所占用的磁道長(zhǎng)度不得小于 。為了數(shù)據(jù)檢索便利,磁盤格式化時(shí)要求所有磁道要具有相同的比特?cái)?shù)。
問(wèn)題:現(xiàn)有一張半徑為 的磁盤,它的存儲(chǔ)區(qū)是半徑介于 與 之間的環(huán)形區(qū)域.
是不是 越小,磁盤的存儲(chǔ)量越大?
為多少時(shí),磁盤具有最大存儲(chǔ)量(最外面的磁道不存儲(chǔ)任何信息)?
解:由題意知:存儲(chǔ)量=磁道數(shù)×每磁道的比特?cái)?shù)。
設(shè)存儲(chǔ)區(qū)的半徑介于 與R之間,由于磁道之間的寬度必需大于 ,且最外面的磁道不存儲(chǔ)任何信息,故磁道數(shù)最多可達(dá) 。由于每條磁道上的比特?cái)?shù)相同,為獲得最大存儲(chǔ)量,最內(nèi)一條磁道必須裝滿,即每條磁道上的比特?cái)?shù)可達(dá) 。所以,磁盤總存儲(chǔ)量
×
(1)它是一個(gè)關(guān)于 的二次函數(shù),從函數(shù)解析式上可以判斷,不是 越小,磁盤的存儲(chǔ)量越大.
(2)為求 的最大值,計(jì)算 .

令 ,解得
當(dāng) 時(shí), ;當(dāng) 時(shí), .
因此 時(shí),磁盤具有最大存儲(chǔ)量。此時(shí)最大存儲(chǔ)量為
例3. 飲料瓶大小對(duì)飲料公司利潤(rùn)的影響
(1)你是否注意過(guò),市場(chǎng)上等量的小包裝的物品一般比大包裝的要貴些?
(2)是不是飲料瓶越大,飲料公司的利潤(rùn)越大?
【背景知識(shí)】 某制造商制造并出售球型瓶裝的某種飲料.瓶子的制造成本是 分,其中 是瓶子的半徑,單位是厘米。已知每出售1 mL的飲料,制造商可獲利 0.2 分,且制造商能制作的瓶子的最大半徑為 6cm
問(wèn)題:(1)瓶子的半徑多大時(shí),能使每瓶飲料的利潤(rùn)最大?
   (2)瓶子的半徑多大時(shí),每瓶的利潤(rùn)最小?
【引導(dǎo)】 先建立目標(biāo)函數(shù),轉(zhuǎn)化為函數(shù)的最值問(wèn)題,然后利用導(dǎo)數(shù)求最值.

(1)半徑為 cm 時(shí),利潤(rùn)最小,這時(shí) ,表示此種瓶?jī)?nèi)飲料的利潤(rùn)還不夠瓶子的成本,此時(shí)利潤(rùn)是負(fù)值.
(2)半徑為 cm時(shí),利潤(rùn)最大.
【思考】根據(jù)以上三個(gè)例題,總結(jié)用導(dǎo)數(shù)求解優(yōu)化問(wèn)題的基本步驟.
【總結(jié)】(1)認(rèn)真分析問(wèn)題中各個(gè)變量之間的關(guān)系,正確設(shè)定最值變量 與自變量 ,把實(shí)際問(wèn)題轉(zhuǎn)化為數(shù)學(xué)問(wèn)題,列出適當(dāng)?shù)暮瘮?shù)關(guān)系式 ,并確定函數(shù)的定義區(qū)間;
(2)求 ,解方程 ,得出所有實(shí)數(shù)根;
(3)比較函數(shù)在各個(gè)根和端點(diǎn)處的函數(shù)值的大小,

本文來(lái)自:逍遙右腦記憶 http://m.portlandfoamroofing.com/gaoer/64824.html

相關(guān)閱讀:遞推數(shù)列中的通項(xiàng)公式