高中數(shù)學學習指導:數(shù)學歸納法

編輯: 逍遙路 關鍵詞: 高中數(shù)學 來源: 高中學習網(wǎng)


    數(shù)學歸納是一種有特殊事例導出一般原理的思維方法。歸納推理分完全歸納推理與不完全歸納推理兩種。不完全歸納推理只根據(jù)一類事物中的部分對象具有的共同性質,推斷該類事物全體都具有的性質,這種推理方法,在數(shù)學推理論證中是不允許的。完全歸納推理是在考察了一類事物的全部對象后歸納得出結論來。
  
  數(shù)學歸納法是用來證明某些與自然數(shù)有關的數(shù)學命題的一種推理方法,在解數(shù)學題中有著廣泛的應用。它是一個遞推的數(shù)學論證方法,論證的第一步是證明命題在n=1(或n)時成立,這是遞推的基礎,第二步是假設在n=k時命題成立,再證明n=k+1時命題也成立,這是無限遞推下去的理論依據(jù),它判斷命題的正確性能否由特殊推廣到一般,實際上它使命題的正確性突破了有限,達到無限。這兩個步驟密切相關,缺一不可,完成了這兩步,就可以斷定“對任何自然數(shù)(或n≥n且n∈N)結論都正確”。由這兩步可以看出,數(shù)學歸納法是由遞推實現(xiàn)歸納的,屬于完全歸納。
  
  運用數(shù)學歸納法證明問題時,關鍵是n=k+1時命題成立的推證,此步證明要具有目標意識,注意與最終要達到的解題目標進行分析比較,以此確定和調控解題的方向,使差異逐步減小,最終實現(xiàn)目標完成解題。
  
  運用數(shù)學歸納法,可以證明下列問題:與自然數(shù)n有關的恒等式、代數(shù)不等式、三角不等式、數(shù)列問題、幾何問題、整除性問題等等。
  

本文來自:逍遙右腦記憶 http://m.portlandfoamroofing.com/gaozhong/523139.html

相關閱讀:讓數(shù)學課堂奏響和諧旋律