2018年江蘇省宿遷市中考數(shù)學(xué)二模試卷
一、選擇題(本大題共有8小題,每小題3分,共24分.在每小題所給出的四個(gè)選項(xiàng)中恰有一項(xiàng)是符合題目要求的,請(qǐng)將正確選項(xiàng)前 的字母代號(hào)寫 在答題紙的相應(yīng)位置上)
1.(3分)2017的相反數(shù)是( �。�
A.2017 B.?2017 C. D.?
2.(3分)下列運(yùn)算正確的是( )
A.x2+x3=x5 B.(x?2)2=x2?4 C.(x3)4=x7 D.2x2⋅x3=2x5
3.(3分)如圖,以原點(diǎn)O為圓心,半徑為1的弧交坐標(biāo)軸于A,B兩點(diǎn),P是 上一點(diǎn)(不與A,B重合),連接OP,設(shè)∠POB= α,則點(diǎn)P的坐標(biāo)是( )
A.(sinα,sinα) B.(cosα,cosα) C.(cosα,sinα) D.(sinα,cosα)
4.(3分)已知關(guān)于x的二元一次方程組 ,若x+y>4,則m的取值范圍是( )
A.m>2 B.m<4 C.m>5 D.m>6
5.(3分)如圖,直線l1∥l2,以直線l1上的點(diǎn)A為圓心、適當(dāng)長(zhǎng)為半徑畫弧,分別交直線l1、l2于點(diǎn)B、C,連接AC、BC.若∠ABC=67°,則∠1=( �。�
A.23° B.46° C.67° D.78°
6.(3分)互聯(lián)網(wǎng)“微商”經(jīng)營(yíng)已成為大眾創(chuàng)業(yè)新途徑,某微信平臺(tái)上一件商品標(biāo)價(jià)為200元,按標(biāo)價(jià)的五折銷售,仍可獲利20元,則這件商品的進(jìn)價(jià)為( )
A.120元 B.100元 C.80元 D.60元
7.(3分)如圖,將矩形ABCD繞點(diǎn)C順時(shí)針旋轉(zhuǎn)90°得到矩形FGCE,點(diǎn)M、N分別是BD、GE的中點(diǎn),若BC=7,CE=1,則MN的長(zhǎng)( �。�
A.3 B.5 C.6 D.8
8.(3分)在平面直角坐標(biāo)系中,直線y=?x+2與反比例函數(shù)y= 的圖象有唯一公共點(diǎn),若直線y=?x+b與反比例函數(shù)y= 的圖象有2個(gè)公共點(diǎn),則b的取值范圍是( )
A.b>2 B.?2<b<2 C.b>2或b<?2 D.b<?2
二、填空題(本大題共8題,每小題3分,共24分,不需要寫出解答過(guò)程,請(qǐng)把最后結(jié)果填在答題卷相應(yīng)的位置上)
9.(3分)因式分解:xy2?4x= �。�
10.(3分)當(dāng)x= 時(shí),分式 無(wú)意義.
11.(3分)如圖,在正五邊形ABCDE中,以BC為一邊,在形內(nèi)作等邊△BCF,連結(jié)AF.則∠AFB的大小是 度.
12.(3分)將半徑為6cm的圓形紙片沿AB折疊后,圓弧恰好能經(jīng)過(guò)圓心O,用圖中陰影部分的扇形圍成一個(gè)圓錐的側(cè)面,則這個(gè)圓錐的高為 .
13.(3分)無(wú)論m取什么實(shí)數(shù),點(diǎn)A(m+1,2m?2)都在直線l上.若點(diǎn)B(a,b)是直線l上的動(dòng)點(diǎn),(2a?b?5)2017的值等于 �。�
14.(3分)如圖,在扇形AOB中,∠AOB=90°, = ,點(diǎn)D在OB上,點(diǎn)E在OB的延長(zhǎng)線上,當(dāng)正方形C DEF的邊長(zhǎng)為4 時(shí),則陰影部分的面積為 �。�
15.(3分)關(guān)于x的方程 =1的解是不小于1的數(shù),則a的取值范圍是 �。�
16.(3分)在矩形ABCD中,AB=8,BC=6,點(diǎn)P在邊AB上.若將△DAP沿DP折疊,使點(diǎn)A落在矩形對(duì)角線上的點(diǎn)A′處,則AP的長(zhǎng)為 �。�
三、解答題(本大題共10小題,共72分,解答時(shí)應(yīng)寫出文字說(shuō)明、證明過(guò)程或演算步驟.)
17.(6分)計(jì)算:20170?|? |+(? )?1+2sin45°.
18.(6分)解不等式組: ,并把解集在數(shù)軸上表示出來(lái).
19.(6分)先化簡(jiǎn),再求值: ,其中 .
20.(6分)考試前,同學(xué)們總會(huì)采用各種方式緩解考試壓力,以最佳狀態(tài)迎接考試.某校對(duì)該校九年級(jí)的部分同學(xué)做了一次內(nèi)容為“最適合自己的考前減壓方式”的調(diào)查活動(dòng),學(xué)校將減壓方式分為五類,同學(xué)們可根據(jù)自己的情況必選且只選其中一類.?dāng)?shù)據(jù)收集整理后,繪制了圖1和圖2兩幅不完整的統(tǒng)計(jì)圖,請(qǐng)根據(jù)統(tǒng)計(jì)圖中的信息解答下列問(wèn)題:
(1)請(qǐng)通過(guò)計(jì)算,補(bǔ)全條形統(tǒng)計(jì)圖;
(2)請(qǐng)直接寫出扇形統(tǒng)計(jì)圖中“享受美食”所對(duì)應(yīng)圓心角的度數(shù)為 ��;
(3)根據(jù)調(diào)查結(jié)果,可估計(jì)出該校九年級(jí)學(xué)生中減壓方式的眾數(shù)和中位數(shù)分別是 , �。�
21.(6分)將A,B,C,D四人隨機(jī)分成甲、乙兩組參加羽毛球比賽,每組兩人.
(1)A在甲組的概率是多少?
(2)A,B都在甲組的概率是多少?
22.(6分)如圖,小明在大樓45米高(即PH=45米,且PH⊥HC)的窗口P處進(jìn)行觀測(cè),測(cè)得山坡上A處的俯角為15° ,山腳B處得俯角為60°,已知該山坡的坡度i(即tan∠ABC)為1: .(點(diǎn)P、H、B、C、A在同一個(gè)平面上.點(diǎn)H、B、C在同一條直線上)
(1)∠PBA的度數(shù)等于 度;(直接填空)
(2)求A、B兩點(diǎn)間的距離(結(jié)果精確到0.1米,參考數(shù)據(jù): ≈1.414, ≈1.732).
23.(8分)(1)如圖1,已知⊙O的半徑是4,△ABC內(nèi)接于⊙O,AC=4 .
①求∠ABC的度數(shù);
②已知AP是⊙O的切線,且AP=4,連接PC.判斷直線PC與⊙O的位置關(guān)系,并說(shuō)明理由;
(2)如圖2,已知▱ABCD的頂點(diǎn)A、B、D在⊙O上,頂點(diǎn)C在⊙O內(nèi),延長(zhǎng)BC交⊙O于點(diǎn)E,連接DE.求證:DE=DC.
24.(8分)已知:一次函數(shù)y=?x+b的圖象與x軸、y軸的交點(diǎn)分別為A、B與反比例函數(shù) 的圖象交于點(diǎn)C、D,且 .
(1)求∠BAO的度數(shù);
(2)求O到BC的距離.
25.(10分)如圖乙,△AB C和△ADE是有公共頂點(diǎn)的等腰直角三角形,∠BAC=∠DAE=90°,點(diǎn)P為射線BD,CE的交點(diǎn).
(1)如圖甲,將△ADE繞點(diǎn)A 旋轉(zhuǎn),當(dāng)C、D、E在同一條直線上時(shí),連接BD、BE,則下列給出的四個(gè)結(jié)論中,其中正確的是 .
①BD=CE②BD⊥CE③∠ACE+∠DBC=45°④BE2=2(AD2+AB2)
(2)若AB=4,AD=2,把△ADE繞點(diǎn)A旋轉(zhuǎn),
①當(dāng)∠EAC=90°時(shí),求PB的長(zhǎng);
②求旋轉(zhuǎn)過(guò)程中線段PB長(zhǎng)的最大值.
26.(10分)已知拋物線y=ax2+bx+c與x軸交點(diǎn)A(1,0),C(?3,0).與y軸 交點(diǎn)B(0,3),如圖1所示,D為拋物線的頂點(diǎn).
(1)求拋物線的解析式.
(2)如圖1若R為y軸上的一個(gè)動(dòng)點(diǎn),連接AR,則 RB+AR的最小值為
(3)在x軸上取一動(dòng)點(diǎn)P(m,0),?3<m<?1,過(guò)點(diǎn)P作x軸的垂線,分別交拋物線、CD、CB于點(diǎn)Q、F、E,如圖2所示,求證:EF=EP.
(4)設(shè)此拋物線的對(duì)稱軸為直線MN,在直線MN上取一點(diǎn)T,使∠BTN=∠CTN.直接寫出點(diǎn)T的坐標(biāo).
2018年江蘇省宿遷市中考數(shù)學(xué)二模試卷
參考答案與試題解析
一、選擇題(本大題共有8小題,每小題3分,共24分.在每小題所給出的四個(gè)選項(xiàng)中恰有一項(xiàng)是符合題目要求的,請(qǐng)將正確選項(xiàng)前的字母代號(hào)寫在答題紙的相應(yīng) 位置上)
1.
【解答】解:2017的相反數(shù)是?2017,
故選:B.
2.
【解答】解:A、x2和x3不能合并,故本選項(xiàng)不符合題意;
B、結(jié)果是x2?4x+4,故本選項(xiàng)不符合題意;
C、結(jié)果是x12,故本選項(xiàng)不符合題意;
D、結(jié)果是2x5,故本選項(xiàng)符合題意;
故選:D.
3.
【解答】解:過(guò)P作PQ⊥OB,交OB于點(diǎn)Q,
在Rt△OPQ中,OP=1,∠POQ=α,
∴sinα= ,cosα= ,即PQ=s inα,OQ=cosα,
則P的坐標(biāo)為(cosα,sinα),
故選:C.
4.
【解答】解: ,
①+②得:4x=4m?6,即x= ,
①?②×3得:4y=?2,即y=? ,
根據(jù)x+y>4得: ? >4,
去分母得:2m?3?1>8,
解得:m>6.
故選:D.
5.
【解答】解:根據(jù)題意得:AB=AC,
∴∠ACB=∠ABC=67°,
∵直線l1∥l2,
∴∠2=∠ABC=67°,
∵∠1+∠ACB+∠2=180°,
∴∠1=180°?∠2?∠ACB=180°?67°?67°=46°.
故選:B.
6.
【解答】解:設(shè)該商品的進(jìn)價(jià)為x元/件,
依題意得:(x+20)÷ =200,
解得:x=80.
∴該商品的進(jìn)價(jià)為80元/件.
故選:C.
7.
【解答】解:連接AC、CF、AF,如圖所示:
∵矩形ABCD繞點(diǎn)C順時(shí)針旋轉(zhuǎn)90°得到矩形FFCE,
∴∠ABC=90°,
∴AC= = =5
AC=BD=GE=CF,AC與BD互相平分,GE與CF互相平分,
∵點(diǎn)M、N分別是BD、GE的中點(diǎn),
∴M是AC的中點(diǎn),N是CF的中點(diǎn),
∴MN是△ACF的中位線,
∴MN= AF,
∵∠ACF=90°,
∴ △ACF是等腰直角三角形,
∴AF= AC=5 × =10,
∴MN=5.
故選:B.
8.
【解答】解:解方程組 得:x2?bx+1=0,
∵直線y=?x+b與反比例函數(shù)y= 的圖象有2個(gè)公共點(diǎn),
∴方程x2?bx+1=0有兩個(gè)不相等的實(shí)數(shù)根,
∴△=b2?4>0,
∴b>2,或b<?2,
故選:C.
二、填空題(本大題共8題,每小題3分,共24分,不需要寫出解答過(guò)程,請(qǐng)把最后結(jié)果填在答題卷相應(yīng)的位置上)
9.
【解答】解:xy2?4x,
=x(y2?4),
=x(y+2)(y?2).
10.
【解答】解:依題意得:x+2=0,
解得x=?2.
故答案是:?2.
11.
【解答】解:∵△BCF是等邊三角形,
∴BF=BC,∠FBC=60°,
∵在正五邊形ABCDE中,AB=BC,∠ABC=108°,
∴AB=BF,∠ABF=48°,
∴∠AFB=∠BAF= =66°,
故答案為:66.
12.
【解答】解:作半徑OC⊥AB于H,如圖,
∵圓形紙片沿AB折疊后,圓弧恰好能經(jīng)過(guò)圓心O,
∴CH=OH=3
∴OA=2OH
∴∠OAH=30°,
∴∠AOB=120°,
設(shè)圓錐的底面圓的半徑為r,
∴2π•r= ,解得r=2,
∴圓錐的高= =4 .
故答案為4 .
13.
【解答】解:∵令m=0,則B(1,?2);再令m=1,則B(2,0),由于m不論為何值此點(diǎn)均在直線l上,
∴設(shè)此直線的解析式為y=kx+b(k≠0),
∴ ,
解得 ,
∴此直線的解析式為:y=2x?4,
∵B(a,b)是直線l上的點(diǎn),
∴2a?4=b,即2a?b=4,
∴(2a?b?5)2017=(4?5)2017=?1.
故答案是:?1.
14.
【解答】解:∵在扇形AOB中∠AOB=90°,且 = ,
∴∠COD=45°,
∴OC=4 × =8,
∴陰影部分的面積=扇形BOC的面積?三角形ODC的面積
= ? ×(4 )2
=8π?16.
故答案為:8π?16.
15.
【解答】解:分式方程去分母得:2x+a=x?2,
解得:x=?a?2,
由分式方程的解不小于1,得到?a?2≥1,且?a?2≠2,
解得:a≤?3且a≠?4,
故答案為:a≤?3且a≠?4
16.
【解答】解:①點(diǎn)A落在矩形對(duì)角線BD上,如圖1所示.
∵AB=8,AD=6,
∴BD=10,
根據(jù)折疊的性質(zhì),AD=A′D=6,AP=A′P,∠A=∠PA′D=90°,
∴BA′=4,
設(shè)AP=x,則BP=8?x,
∵BP2=BA′2+PA′2,
∴(8?x)2=x2+42,
解得:x=3,
∴AP=3;
②點(diǎn)A落在矩形對(duì)角線AC上,如圖2所示:
由折疊的性質(zhì)可知PD垂直平分AA′,
∴∠BAC+∠A′AD=∠PDA+∠A′AD=90°.
∴∠BAC=∠PDA.
∴tan∠BAC=tan∠PDA.
∴ = ,即 = .
∴AP= .
綜上所述AP的長(zhǎng)為3或 .
故答案為:3或 .
三、解答題(本大題共10小題,共72分,解答時(shí)應(yīng)寫出文字說(shuō)明、證明過(guò)程或演算步驟.)
17.
【解答】解:20170?|? |+(? )?1+2sin45°=1? ?3+
=?2.
18.
【解答】解:由①得x≥4,
由②得x<1,
∴原不等式組無(wú)解,
19.
【解答】解法一解:原式=
=
=
當(dāng) 時(shí),原式= .
解法二:原式=
=
=
當(dāng) 時(shí),原式= .
20.
【解答】解:(1)一共抽查的學(xué)生:8÷16%=50人,
參加“體育活動(dòng)”的人數(shù)為:50×30%=15人,
補(bǔ)全統(tǒng)計(jì)圖如圖所示:
(2)“享受美食”所對(duì)應(yīng)扇形的圓心角的度數(shù)為:360°× =72°;
(3)B出現(xiàn)了15次,出現(xiàn)的次數(shù)最多,則眾數(shù)是B;
因?yàn)楣灿?0人,把這組數(shù)據(jù)從小到大排列,最中間兩個(gè)都是C,
所以中位數(shù)是C.
故答案為:72°;B,C.
21.
【解答】解:所有可能出現(xiàn)的結(jié)果如下:
甲組 乙組 結(jié)果
AB CD (AB,CD)
AC BD (AC,BD)
AD BC (AD,BC)
BC AD (BC,AD)
BD A C (BD,AC)
CD AB (CD,AB)
總共有6種結(jié)果,每種結(jié)果出現(xiàn)的可能性相同.
(1)所有的結(jié)果中,滿足A在甲組的結(jié)果有3種,所以A在甲組的概率是 .(2分)
(2)所有的結(jié)果中,滿足A,B都在甲組的結(jié)果有1種,所以A,B都在甲組的概率是 .(6分)
22.
【解答】解:(1)∵山坡的坡度i(即tan∠ABC)為1: .
∴tan∠ABC= ,
∴∠ABC=30°;
∵從P點(diǎn)望山腳B處的俯角60°,
∴∠PBH=60°,
∴∠ABP=180°?30°?60°=90°
故答案為:90.
(2)由題意得:∠PBH=60°,
∵∠ABC=30°,
∴∠ABP=90°,
∴△PAB為直角三角形,
又∵∠APB=45°,
在直角△PHB中,PB=PH÷sin∠PBH=45÷ =30 (m).
在直角△PBA中,AB=PB•tan∠BPA=30 ≈52.0(m).
故A、B兩點(diǎn)間的距離約為52.0米.
23.
【解答】(1)解:①連結(jié)OA、OC,如圖1,
∵OA=OC=4,AC=4 ,
∴OA2+OC2=AC2,
∴△OCA為等腰直角三角形,∠AOC=90°,
∴∠ABC= ∠AOC=45°;
②直線PC與⊙O相切.理由如下:
∵AP是⊙O的切線,
∴∠OAP=90°,
而∠AOC=90°,
∴AP∥OC,
而AP=OC=4,
∴四邊形APCO為平行四邊形,
∵∠AOC=90°,
∴四邊形AOCP為矩形,
∴∠PCO=90°,
∴PC⊥OC,
∴PC為⊙O的切線;
(2)證明:∵四邊形ABCD為平行四邊形,
∴AB∥CD,AD∥BC,
∴∠B+∠A=180°,∠DCE=∠B,
∵∠E+∠A=180°,
∴∠E=∠B,
∴∠DCE=∠E,
∴DC=DE.
24.
【解答】解:(1)在y=?x+b中,令y=0,則x=b,令x=0,y=b,
∴A(b,0),B(0,b),
∴OA=b,OB=b,
∴tan∠BAO= =1,
∴∠BAO=45°;
(2)過(guò)D作DE⊥x軸于E,
∴DE∥OB,
∴△ADE∽△AOB,
∴ ,
∵點(diǎn)D在一次函數(shù)y=?x+b的圖象上,
∴設(shè)D(m,?m+b),
∵ ,
∴ ,
∴ ,①,
∵點(diǎn)D反比例函數(shù) 的圖象上,
∴m(?m+b)=5,②,
①,②聯(lián)立方程組解得m=± ,
∵D在第一象限,
∴m= ,
∴b= ,
∴OA=OB= ,
∴AB= OA=3 ,
∴O到BC的距離= AB= .
25.
【解答】(1)解:如圖甲:
①∵∠BAC=∠DAE=90°,
∴∠BAC+∠DAC=∠DAE+∠DAC,
即∠BAD=∠CAE.
在△ABD和△ACE中,
,
∴△ABD≌△ACE(SAS),
∴BD=CE,∴①正確;
②∵△ABD≌△ACE,
∴∠ABD=∠ACE.
∵∠CAB=90°,
∴∠ABD+∠AFB=90°,
∴∠ACE+∠AFB=90°.
∵∠DFC=∠AFB,
∴∠ACE+∠DFC=90°,
∴∠FDC=90°.
∴BD⊥CE,∴②正確;
③∵∠BAC=90°,AB=AC,
∴∠ABC=45°,
∴∠ABD+∠DBC=45°.
∴∠ACE+∠DBC=45°,∴③正確;
④∵BD⊥CE,
∴BE2=BD2+DE2,
∵∠BAC=∠DAE=90°,AB=AC,AD=AE,
∴DE2=2AD2,BC2=2AB2,
∵BC2=BD2+CD2≠BD2,
∴2AB2=BD2+CD2≠BD2,
∴BE2≠2(AD2+AB2),∴④錯(cuò)誤.
故答案為①②③.
(2)①解:a、如圖2中, 當(dāng)點(diǎn)E在AB上時(shí),BE=AB?AE=2.
∵∠EAC=90°,
∴CE= =2 ,
同(1)可證△ADB≌△AEC.
∴∠DBA=∠ECA.
∵∠PEB=∠AEC,
∴△PEB∽△AEC.
∴ = ,
∴ =
∴PB= .
b、如圖3中,當(dāng)點(diǎn)E在BA延長(zhǎng)線上時(shí),BE=6.
∵∠EAC=90°,
∴CE= =2 ,
同(1)可證△ ADB≌△AEC.
∴∠DBA=∠ECA.
∵∠BEP=∠CEA,
∴△PEB∽△AEC,
∴ = ,
∴ = ,
∴PB=
綜上,PB= 或 .
②解:如圖5中,以A為圓心AD為半徑畫圓,當(dāng)CE在⊙A上方與⊙A相切時(shí),PB的值最大.
理由:此時(shí)∠BCE最大,因此PB最大,(△PBC是直角三角形,斜邊BC為定值,∠BCE最大,因此PB最大)
∵AE⊥EC,
∴EC= =2 ,
由(1)可知,△ABD≌△ACE,
∴∠ADB=∠AEC=90°,BD=CE=2 ,
∴∠ADP=∠DAE=∠AEP=90°,
∴四邊形AEPD是矩形,
∴PD=AE=2,
∴PB=BD+PD=2 +2.
綜上所述,PB長(zhǎng)的最大值是2 +2.
26.
【解答】解:(1)根據(jù)題意得:
,
解得: ,
則拋物線的解析式是y=?x2?2x+3;
(2)如圖1中,作RH⊥BC于H.
∵OB =OC=3,∠COB=90°,
∴BC=3 ,∠HBR=45°,
在Rt△BHR中,RH= BR,
∴AR+ BR=AR+RH,
∴當(dāng)H、R、A共線時(shí),AR+ BR=AR+RH的值最小,
此時(shí) •BC•AH= •AC•OB,
∴AH=2 ,
∴AR+ BR的最小值為2 .
故答案為2
(3)如圖2中,
∵y=?x2?2x+3=?(x+1)2+4,
則D的坐標(biāo)是(?1,4).
設(shè)直線BC的解析式是y=kx+b,則 ,
解得: ,
則直線BC的解析式是y=x+3.
同理,直線CD的解析式是y=2x+6.
∵動(dòng)點(diǎn)P(m,0)在x軸上,?3<m<?1,且PF⊥x軸.
∴點(diǎn)E(m,m+3),點(diǎn)F(m,2m+6),即PE=m+3,PF=2m+6.EF=PF?PE=(2m+6)?(m+3)=m+3.
∴EF=EP;
(4)如圖3中,
延長(zhǎng)AB交MN于T,連接TC.
∵M(jìn)N垂直平分線段AC,
∴TC=TA,
∴∠CTN=∠ATN,即∠CTN=∠BTN.
∵直線AB的解析式為y=?3x+3,
∴x=?1時(shí),y=6,
∴T的坐標(biāo)(?1,6).
本文來(lái)自:逍遙右腦記憶 http://m.portlandfoamroofing.com/chuer/1113135.html
相關(guān)閱讀:2018年人教版八年級(jí)數(shù)學(xué)下《第18章平行四邊形》同步測(cè)試題(有答
闂傚倸鍊搁崐鐑芥嚄閸撲礁鍨濇い鏍亼閳ь剙鍟村畷銊р偓娑櫭禍杈ㄧ節閻㈤潧孝闁稿﹤顕槐鎾愁潩閼哥數鍘卞銈嗗姂閸婃洟寮搁弮鍫熺厽婵犻潧妫涢崺锝夋煛瀹€瀣埌閾绘牠鏌嶈閸撶喖骞冭缁绘繈宕舵搴b棨闂備礁鎼粙渚€宕㈡禒瀣亗闁靛濡囩粻楣冩煙鐎电ǹ浠ч柟鍐叉噺閵囧嫰鏁愰崨顓犻獓缂備胶绮换鍫ュ春閳ь剚銇勯幒宥囶槮妞ゆ洟浜堕弻鈩冨緞鐎n亞浠稿銈冨劜缁诲牆顫忓ú顏勭闁绘劖褰冩俊褔姊洪崨濠傚闁哄懏绮岄埢鎾寸鐎n偀鎷洪柣鐘叉搐瀵爼骞戦敐澶嬬厵闁惧浚鍋呯亸顓㈡煥閺囨ê鐏查柡灞芥椤撳ジ宕ㄩ閿亾椤掑嫭鐓涘璺猴功婢ф垿鏌涢弬鍧楀弰闁靛棗鎳樺濠氬Ψ閿旀儳骞嶉梻浣虹帛閸ㄦ儼鎽紒鐐礃瀹曠數妲愰幒妤婃晩闁兼亽鍎遍弳妤冪磽娴d粙鍝洪柟鐟版搐閻e嘲顫滈埀顒勫春閳╁啯濯撮弶鐐靛閸嬪懘姊婚崒娆愮グ婵℃ぜ鍔戝钘夘吋婢跺﹦锛欏┑鐘绘涧椤戝洤鐣垫笟鈧幃妤呮晲鎼粹剝鐏嶉梺绋款儛娴滄繈濡甸崟顖氬唨闁靛ě灞炬婵$偑鍊栭弻銊ッ洪鐑嗘綎婵炲樊浜滃婵嗏攽閻樻彃顏柛锝庡弮濮婃椽骞栭悙鎻掝潊闂佺ǹ顑嗛崝鏇㈠煡婢舵劖鍋ㄧ紒瀣硶閸旓箑顪冮妶鍡楃瑨閻庢凹鍙冮幃锟犳偄閸涘﹤寮垮┑鈽嗗灣閸樠呮暜閼哥數绠鹃柛娑卞枤閹冲懐绱掓潏銊ョ瑲婵炵厧绻樻俊姝岊槾闁伙絽銈稿楦裤亹閹烘繃顥栨繝鐢靛亹閸嬫挻绻濈喊澶岀?闁稿繑锕㈠顐﹀磼閻愭潙浠奸柣蹇曞仧鏋ù婊呭亾閵囧嫰寮村Δ鈧禍楣冩⒑鐠団€虫灈闁搞垺鐓¢崺銏℃償閵堝洨鏉搁梺鍦檸閸ㄧ増绂嶉幆褉鏀介柣妯虹枃婢规ḿ鐥幆褜鐓奸柡灞诲妼閳规垿宕卞鍡橈骏婵$偑鍊愰弲婵嬪礂濮椻偓瀵鈽夊Ο閿嬵潔闂佸憡顨堥崑娑綖閳哄懏鈷戦弶鐐村椤斿鏌¢崨顖氣枅妤犵偛鍟伴幑鍕偘閳╁喚娼旈梻浣告惈鐠囩偤宕橀崜褉鍋撴潏鈺冪=闁稿本鑹鹃埀顒€鎽滅划鏃堟濞磋櫕鐩畷姗€顢欓懖鈺冩瀮闂備浇顫夊畷姗€顢氳椤斿繐鈹戦崶銉ょ盎闂佸搫鍟ú銈堫暱闂佽瀛╂穱鍝勨枍閺囩姵宕叉繛鎴炲焹閸嬫挸鈽夊▎瀣窗闂佹椿鍘奸鍛存箒濠电姴艌閸嬫挾绱掗鐣屾噰鐎规洘妞介崺鈧い鎺嶉檷娴滄粓鏌熼崫鍕棞濞存粓绠栧铏圭矙閸栤€冲闂佺娅曢幑鍥极閸愵喖顫呴柕鍫濇噽椤撶厧顪冮妶鍡樷拹闁稿骸鍟块悾鐑藉Ψ閵夈垺鏂€闂佺粯鍔曞鍫曀夊⿰鍕閻庣數枪閸樻挳鏌熼姘冲闁伙絾绻堝畷鐔碱敆閸屾艾绠ョ紓鍌氬€搁崐鐑芥倿閿曞倹鏅┑鐘愁問閸犳牠宕幍顔筋潟闁圭儤姊瑰畷澶愭煣韫囨稈鍋撳☉姘垛攺缂傚倸鍊风粈渚€鎯岄崒娑氼洸闁割偅娲栭弰銉╂煕閺囥劌鐏犵紒鈧崘顏呭枑闊洦娲滈惌鍡涙煃瑜滈崜鐔奉潖閾忚瀚氶柟缁樺俯閸斿绱撴担鍓插剱閻㈩垽绻濆顐も偓锝庡枟閳锋垹绱掔€n偒鍎ラ柛搴$箳缁辨帗寰勬繝鍌ゆ殺闂佸憡甯楃敮鎺楋綖濠靛鏁勯柣鎰摠閵囨繃銇勯姀鈩冾棃鐎规洦浜畷姗€顢旈崟顒€鍔掗梻鍌氬€搁崐椋庣矆娓氣偓楠炴牠顢曢敂钘変罕闂佺硶鍓濋悷褔鎯岄幘缁樺€垫繛鎴烆伆閹达箑鐭楅煫鍥ㄧ⊕閻撶喖鏌¢崒姘变虎闁诡喗鍨块弻锟犲椽娴gǹ鈷嬮梺璇″枟閿曘垽骞冨▎鎴炲磯閺夌偟澧楅惈蹇涙⒒娴h棄鍚归柛鐘冲姉閹广垽宕奸妷銉ㄦ憰闂佺粯姊婚崢褔宕欓悩鐐戒簻闁规壋鏅涢悘鈺佲攽椤旇姤绀€闁宠鍨块幃鈺咁敃椤厼顥氭繝鐢靛仦閹稿宕洪崘顔肩;闁圭偓鎯屽▓浠嬫煟閹邦垰鐨洪弫鍫ユ⒑缁洘鏉归柛瀣尭椤啴濡堕崱妤冪懆闁诲孩鍑归崜娑㈠焵椤掍浇澹樻い锔诲灦閳ワ妇鎹勯妸锕€纾繛鎾村嚬閸ㄤ即宕滄潏鈺冪=闁稿本姘ㄨⅵ闂佺ǹ顑嗛幑鍥ь潖缂佹ɑ濯撮柣鐔煎亰閸ゅ绱撴担鍓插剱闁搞劌澧庣紓鎾寸鐎n亞鐫勯梺绋挎湰缁酣鎮鹃懜鐢电瘈闁靛骏绲介悡鎰版煕閺冣偓濞叉粎鍒掓繝姘ㄩ柍鍝勫€婚崢鐢电磽娴e壊鍎忔繛纭风節椤㈡挸螖娴e吀绨婚柟鍏肩暘閸ㄥ搫鐣峰畝鍕厸鐎光偓鐎n剛袦闂佺硶鏅换婵嗙暦濡ゅ懏鏅濋柍褜鍓涚槐鐐寸節閸屾粍娈鹃梺鎸庣箓閻楁粌危婵犳碍鈷戠€规洖娲ㄧ敮娑欎繆椤愩垹鏆欐い鏇秮楠炴﹢顢欓挊澶嗗亾閻戣姤鐓曢煫鍥ㄦ尰閹叉悂鏌i鐕佹疁婵﹥妞介幊锟犲Χ閸涘拑缍侀弻娑㈠棘閻愬弶鍣圭紒韬插€曢埞鎴﹀磼濠ф挸婀辩划濠氬蓟閵夛妇鍘棅顐㈡搐椤戝懘鍩€椤掍焦绀夌紒缁樺哺濮婄粯鎷呴崨闈涚秺瀵敻顢楅崟顐ゎ槱闂佽崵鍠愰崳鏉懨洪鍕幯冾熆鐠轰警鍎戦柛妯哄船閳规垿鎮欓崣澶樻!闂佸憡姊瑰ú鐔煎箖濮椻偓閸╋繝宕掗妶鍡╁晬闂備胶绮崝鏇烆嚕閸洖绐楁俊顖氱毞閸嬫挸鈻撻崹顔界亾闂佽桨绀侀…鐑藉Υ娴h倽鏃堝川椤撶媴绱叉繝鐢靛Т閿曘倝宕幎绛嬫晩濠㈣埖鍔栭埛鎺懨归敐鍛暈闁诡垰鐗撻弻锝呂旈埀顒€螞濠靛﹥顥ら梻浣筋潐椤旀牠宕板鑸靛剹闁瑰墽绮悡鏇㈡煥閺冨浂鍤欐鐐村姍閺屾稓鈧綆鍋呯亸顓熴亜椤愶絿绠炴い銏☆殕閹峰懐鎲撮崟顐紗濠电姷鏁告慨鎾儉婢舵劕围闁告洦鍋呴崕鎾绘⒒娴g瓔鍤冮柛锝庡櫍瀹曟娊鏁愭径鍫氬亾娴h倽鐔烘偘閳╁啯鏉搁梺璇插嚱缂嶅棝宕戦崨瀛樺仼闁割偅娲橀埛鎺懨归敐鍛暈闁诡垰鐗婇妵鍕槷闁稿鎹囧娲偡閺夋寧顔€闂佺懓鍤栭幏锟�/闂傚倸鍊风粈渚€骞栭位鍥敃閿曗偓閻ょ偓绻濇繝鍌涘櫤鐎规洘鐓¢弻娑㈠箛閸忓摜鍑归梺绋跨箲缁捇寮婚妶鍥╃煓閻犳亽鍔嬬划鍨箾鐎涙ê娈犻柛濠冪墱閹广垹鈹戠€n偒妫冨┑鐐村灦鐢偛锕㈤崨顓涙斀闁绘劖褰冮幃鎴︽煕閺冣偓閻熲晛顕f繝姘櫜濠㈣泛谩閳哄懏鐓忓璺虹墕閸旀潙霉閻樺眰鍋㈡慨濠冩そ瀹曨偊濡烽妷銈囨崟婵$偑鍊栧ú锕傚矗閸愵喖鏄ラ柍褜鍓氶妵鍕箳閸℃ぞ澹曟繝鐢靛Л閸嬫捇鏌涘Δ鍐ㄤ汗闁哄绉归弻鏇$疀鐎n亞浠惧銈庡亝濞叉ḿ鎹㈠┑瀣棃婵炴垶鑹鹃·鈧梺璇插绾板秴顫濋妸鈺佺劦妞ゆ帒鍊归崵鈧柣搴㈠嚬閸樺ジ鈥﹂崹顔ョ喖鎮℃惔锝囩摌婵犵數鍋涘Ο濠冪濠靛鐓曢柟瀵稿亼娴滄粓鏌熼弶鍨暢缁炬崘娉曠槐鎺楀箛椤撶噥妫冮梺鍝勬湰缁嬫捇鍩€椤掑﹦绉甸柛瀣閺呭爼顢楅崒婊咃紲闂佺ǹ鏈粙鎴澝归绛嬫闁绘劕寮堕ˉ銏⑩偓娈垮枛閻栧ジ鐛幇顓熷劅妞ゆ柨鍚嬪▍锟� bjb@jiyifa.com 婵犵數濮烽弫鎼佸磻閻愬搫鍨傞柛顐f礀缁犳澘螖閿濆懎鏆欑痪鎯ь煼閺岀喖骞嗚閹界娀鏌涘▎蹇曠闁哄本娲熷畷鐓庘攽閹邦厜褔姊洪崫鍕闁告挾鍠栭獮鍐潨閳ь剟骞冨▎鎴炲磯閺夌偟澧楅惈蹇斾繆閻愵亜鈧洜鎹㈠Δ浣侯洸妞ゆ帒鍊归~鏇㈡煙閹呮憼濠殿垱鎸抽弻娑樷攽閸曨偄濮㈠銈嗘煥椤﹂潧顫忛搹鍦<婵☆垳绮崕鎾剁磽娴d粙鍝烘繛鑼枛瀹曟椽鍩€椤掍降浜滈柟鍝勬娴滄儳鈹戦悩顐壕闂備緡鍓欑粔瀵稿閸ф鐓欓悗鐢登规牎濡炪値鍋呭ú妯兼崲濠靛顥堟繛鎴濆船閸撲即鏌f惔銏e妞わ缚鍗虫俊鐢稿礋椤栨氨顔婇梺鐟扮摠缁洪箖宕戦幘璇插強闊洤顑勫Ч妤呮⒑閸濆嫯顫﹂柛搴㈢叀瀹曟劙宕奸弴鐘插絼闂佹悶鍎崝宥囦焊閻楀牄浜滈柕澹啠鏋呴梺鍝勭焿缁蹭粙鍩為幋锕€鐐婇柍鍝勫€搁崹閬嶆煟鎼淬値娼愭繛鍙壝~婵嬪Ω閳轰胶顔嗛梺缁樓归褏绮婚悽鍛婄厵闁绘垶蓱閻擄綁鏌熼鍡欑М婵﹤顭峰畷鎺戭潩椤戣棄浜鹃柛婵勫劗閸嬫挸顫濋妷銉ヮ潎閻庤娲橀崝娆撶嵁鐎n喗鏅濋柍褜鍓熼幃鐐哄垂椤愮姳绨婚梺鍦劋閸╁﹪寮ㄦ繝姘€垫慨妯煎亾鐎氾拷