空間直線知識點總結(jié)
1. 空間直線位置分三種:相交、平行、異面. 相交直線—共面有反且有一個公共點;平行直線—共面沒有公共點;異面直線—不同在任一平面內(nèi)
[注]:①兩條異面直線在同一平面內(nèi)射影一定是相交的兩條直線.(×)(可能兩條直線平行,也可能是點和直線等)
②直線在平面外,指的位置關(guān)系:平行或相交
③若直線a、b異面,a平行于平面
,b與
的關(guān)系是相交、平行、在平面
內(nèi).
④兩條平行線在同一平面內(nèi)的射影圖形是一條直線或兩條平行線或兩點.
⑤在平面內(nèi)射影是直線的圖形一定是直線.(×)(射影不一定只有直線,也可以是其他圖形)
⑥在同一平面內(nèi)的射影長相等,則斜線長相等.(×)(并非是從平面外一點向這個平面所引的垂線段和斜線段)
⑦
是夾在兩平行平面間的線段,若
,則
的位置關(guān)系為相交或平行或異面.
2. 異面直線判定定理:過平面外一點與平面內(nèi)一點的直線和平面內(nèi)不經(jīng)過該點的直線是異面直線.(不在任何一個平面內(nèi)的兩條直線)
3. 平行公理:平行于同一條直線的兩條直線互相平行.
4. 等角定理:如果一個角的兩邊和另一個角的兩邊分別平行并且方向相同,那么這兩個角相等(如下圖).
(二面角的取值范圍
)
(直線與直線所成角
)
(斜線與平面成角
)
(直線與平面所成角
)
(向量與向量所成角
推論:如果兩條相交直線和另兩條相交直線分別平行,那么這兩組直線所成銳角(或直角)相等.
5. 兩異面直線的距離:公垂線的長度.
空間兩條直線垂直的情況:相交(共面)垂直和異面垂直.
是異面直線,則過
外一點P,過點P且與
都平行平面有一個或沒有,但與
距離相等的點在同一平面內(nèi). (
或
在這個做出的平面內(nèi)不能叫
與
平行的平面)
本文來自:逍遙右腦記憶 http://m.portlandfoamroofing.com/gaozhong/213635.html
相關(guān)閱讀:特殊情況能得出一般結(jié)論嗎?
版权声明:本文内容由互联网用户自发贡献,该文观点仅代表作者本人。本站仅提供信息存储空间服务,不拥有所有权,不承担相关法律责任。如发现本站有涉嫌抄袭侵权/违法违规的内容,请发送邮件至 bjb@jiyifa.com 举报,一经查实,本站将立刻删除。