[山東] 高考說明數(shù)學:復習有七點建議

編輯: 路逍遙 關鍵詞: 復習方法 來源: 逍遙右腦記憶


□濟南市教研室教研員 常傳洪

對照數(shù)學現(xiàn)行的課程標準和2014年高考數(shù)學考試說明,無論是指導思想還是對知識和能力的要求,2014年全國統(tǒng)一高考(山東卷)數(shù)學考試說明(以下簡稱說明)全面體現(xiàn)了新課程標準的要求,說明既體現(xiàn)了命題平穩(wěn)過渡保持試題適當難度的指導思想,十分符合我省目前高中數(shù)學教學的實際,又為今后新課程教學以及教學改革提供了有利的支持,同時也有利于為高校選拔優(yōu)秀學生。說明主要體現(xiàn)了以下幾個特點:

一、全面貫徹落實新課標的基本理念和要求

⒈新課標必修內(nèi)容文、理教學要求一樣,說明的要求也完全一樣。

⒉文科列入考試說明的共20章內(nèi)容,其中14章完全和新課標一致,理科列入考試說明的共21章內(nèi)容其中15章完全和新課標完全一致。

⒊部分與新課標不完全一致的內(nèi)容也只是稍有區(qū)別,但這些區(qū)別都是課本內(nèi)容教學中能達到的。有區(qū)別的內(nèi)容是:

⑴函數(shù)4處:

①課標:探索并理解指數(shù)函數(shù)的特殊點。說明:掌握指數(shù)函數(shù)通過的特殊點。

②課標:探索并了解對數(shù)函數(shù)的單調(diào)性與特殊點。說明:理解對數(shù)函數(shù)的單調(diào)性;掌握對數(shù)函數(shù)通過的特殊點。

③課標:根據(jù)具體函數(shù)的圖像,能夠借助計算器用二分法求相應方程的近似解。說明:根據(jù)具體函數(shù)的圖像,能夠用二分法求相應方程的近似解。

④不考實習作業(yè)內(nèi)內(nèi)容。

⑵統(tǒng)計2處:

①課標:體會頻率分布表、頻率分布直方圖、頻率折線圖、莖葉圖的特點。說明:理解頻率分布表、頻率分布直方圖、頻率折線圖、莖葉圖的特點。

②課標:初步體會樣本頻率分布和數(shù)字特征的隨機性。說明:理解樣本頻率分布和數(shù)字特征的隨機性。

⑶三角函數(shù)1處:課標:能借助計算器或計算機畫出y=asin(ωx+φ)的圖像。說明:能畫出y=asin(ωx+φ)表的圖像。

⑷平面向量2處:

①課標:理解向量數(shù)乘的幾何意義。說明:掌握向量數(shù)乘的幾何意義。

②課標:體會向量是一種處理幾何問題、物理問題等的工具,發(fā)展運算能力和解決實際問題的能力。說明:會用向量方法解決一些簡單的力學問題及其他一些實際問題。

⑸理科的圓錐曲線與方程2處:

①課標:能用坐標法解決一些與圓錐曲線有關的簡單幾何問題(直線與圓錐曲線的位置關系)和實際問題。說明:了解圓錐曲線的簡單應用。

②課標:體會數(shù)形結合思想。說明:理解數(shù)形結合思想。

⑹文、理科的導數(shù)極其應用:

課標:會利用導數(shù)解決某些實際問題。說明:體會導數(shù)在解決實際問題中的作用。

⑺文科的圓錐曲線與方程:

課標:體會數(shù)形結合思想。說明:理解數(shù)形結合思想。

二、與2014年高考相比要求一致的內(nèi)容

⒈考試形式一致:考試采用閉卷、筆試形式。試卷滿分150分?荚囅薅〞r間為120分鐘。考試不允許使用計算器。

⒉試卷包括第Ⅰ卷和第Ⅱ卷。試題分選擇題(4選1)、填空題和解答題三種題型。每小題分值及答題要求同上年完全一樣。

⒊試卷應有較高的信度、效度、必要的區(qū)分度和適當?shù)碾y度。

⒋試卷包括容易題、中等難度題和難題,以中等難度題為主。

三、與2014年相比發(fā)生變化的一些內(nèi)容與要求

⒈指導思想上提出了要結合我省高中數(shù)學教學實際,體現(xiàn)數(shù)學學科的性質(zhì)和特點,除了注重對雙基、數(shù)學思想和方法的考查外,還要注重對考生數(shù)學素養(yǎng)和解決問題能力的考查,這種要求無疑是對新課改的有力支持。

⒉考試的范圍全部為新課標內(nèi)容。理科為五個必修模塊加選修系列2的三個必選模塊,文科為五個必修模塊加選修系列1的兩個必選模塊。暫不考系列4的內(nèi)容。

⒊知識三個層次的要求由了解、理解和掌握、靈活和綜合運用這一要求變?yōu)榱私狻⒗斫夂驼莆。其中新說明的了解增加了模仿要求(可理解為類比)。理解增加了清楚知識之間的邏輯關系,能夠用數(shù)學語言對它們作正確的描述,能初步應用數(shù)學知識解決一些現(xiàn)實問題這一要求顯然這與新課標的要求是相符的,體現(xiàn)了數(shù)學學科的性質(zhì)和特點,這對學生的數(shù)學語言和應用意識提出了更高的要求。掌握則相當于去年的靈活和綜合運用要求,增加了能夠?qū)λ兄R進行準確地刻畫或解釋、推導或證明、分類或歸納,相對而言說明中的要求更加明確。

⒋能力要求由四個能力一個意識變?yōu)槲鍌能力兩個意識:其中思維能力變化為抽象概括能力和推理論證能力,其要求更加具體明確,更具操作性?疾閷W生的應用意識第一次單獨提出并提出了較為詳盡的說明,此舉頗有深意,復習中應加以注意。

⒌具體考試內(nèi)容及其要求變化情況:

⑴文、理都新增加了冪函數(shù)的概念及圖象與性質(zhì),函數(shù)與方程,算法初步,推理與證明內(nèi)容,理科還增加了定積分與微分基本定理,刪去了極限內(nèi)容,刪去了了解參數(shù)方程的概念和理解圓的參數(shù)方程概念。文科中則刪去了排列組合與二項式定理。

⑵理科對雙曲線的要求明顯降低,由掌握雙曲線的定義、標準方程和其簡單幾何性質(zhì)變?yōu)榱私庖。增加了了解方程的曲線與曲線方程的對應關系內(nèi)容,理解數(shù)形結合思想要求。

⑶文科降低了對雙曲線和拋物線的要求,由掌握雙曲線和拋物線的定義、標準方程和其簡單幾何性質(zhì)變?yōu)榱私庖。增加了理解?shù)形結合思想要求。同時也說明了橢圓內(nèi)容雖然要求沒變,但考的分量會增加。

⑷立體幾何由于文、理教學內(nèi)容的不同,考試要求也相應地發(fā)生了變化,文科只考必修的內(nèi)容即:要求掌握簡單的幾何體的畫法(三視圖、直觀圖);點線面之間的位置關系;即只有定性分析(位置關系),而無定量分析(求角和距離等)。選修的內(nèi)容則要求理科學生掌握,其中提出了能用向量語言表述線線、線面、面面的垂直、平行關系,顯然對立體幾何內(nèi)容而言,文科要求有所降低,而理科要求則有所提高。另外立體幾何中雖然課本內(nèi)容中有距離問題,但說明中沒有要求,對體的表面積和體積的計算公式由掌握降低為了解(不要求記憶公式)。

⑸數(shù)列的要求有所變化。一是增加了了解等差數(shù)列與一次函數(shù)、等比數(shù)列與指數(shù)函數(shù)的關系;二是把能用有關知識解決簡單的實際問題變化為解決相關的問題。

⑹統(tǒng)計與概率中,對概率的要求較上年有所提高,說明對古典概型進行了全面考查,要求理解古典概型及其概率公式,了解隨機數(shù)的意義,能運用模擬方法估計概率.理科的統(tǒng)計考試內(nèi)容增加了對獨立性檢驗、假設檢驗、聚類分析和回歸分析的考查,要求是了解。

⑺從新的考試說明所附題例看,文、理都對學生搜集處理數(shù)據(jù)的能力和用數(shù)學知識解決實際問題考察的力度有所加強,這點應在復習中引起充分注意。

[1]


本文來自:逍遙右腦記憶 http://m.portlandfoamroofing.com/xuexi/161345.html

相關閱讀:獻給考生背單詞最科學方法