數學天地:歌德巴赫猜想,希望本篇文章對您學習有所幫助。
數學天地:歌德巴赫猜想
哥德巴赫(Goldbach)生于1690年,是德國一位數學家。1742年,哥德巴赫在教學中發(fā)現,每個不小于6的偶數都是兩個質數(只能被和它本身整除的數)之和。如6=3+3,12=5+7等等。
公元1742年6月7日哥德巴赫寫信給當時的大數學家歐拉(Euler),提出了以下的猜想:
(a)任何一個>=6之偶數,都可以表示成兩個奇質數之和。
(b)任何一個>=9之奇數,都可以表示成三個奇質數之和。
這就是著名的哥德巴赫猜想。歐拉在6月30日給他的回信中說,他相信這個猜想是正確的,但他不能證明。敘述如此簡單的問題,連歐拉這樣首屈一指的數學家都不能證明,這個猜想便引起了許多數學家的注意。從哥德巴赫提出這個猜想至今,許多數學家都不斷努力想攻克它,但都沒有成功。當然曾經有人作了些具體的驗證工作,例如: 6 = 3 + 3,8 = 3 + 5,10 = 5 + 5 = 3 + 7,12 = 5 + 7,14 = 7 + 7 = 3 + 11,16 = 5 + 11,18 = 5 + 13,等等。有人對33×108以內且大過6之偶數一一進行驗算,哥德巴赫猜想(a)都成立。但嚴格的數學證明尚待數學家的努力。
從此,這道著名的數學難題引起了世界上成千上萬數學家的注意。200年過去了,沒有人證明它。哥德巴赫猜想由此成為數學皇冠上一顆可望不可及的“明珠”。到了20世紀20年代,才有人開始向它靠近。1920年,挪威數學家布爵用一種古老的篩選法證明,得出了一個結論:每一個比36大的偶數都可以表示為九個質數之積與九個質數之積的和(簡稱9+9)。這種縮小包圍圈的辦法很管用,科學家們于是從(9+9)開始,逐步減少每個積里所含質數因子的個數,直到最后使每個積里都只有一個質數因子為止,這樣就可以證明“哥德巴赫猜想”。
目前最佳的結果是中國數學家陳景潤于1966年證明的,稱為陳氏定理(Chen's Theorem) 。即“任何充分大的偶數都是一個質數與一個自然數之和,而后者僅僅是兩個質數的乘積。”通常都簡稱這個結論為大偶數可表示為 “1 + 2 ”的形式。
在陳景潤之前,關于偶數可表示為 s個質數的乘積 與t個質數乘積之和(簡稱“s + t”問題)之進展情況如下:
1920年,挪威的布朗(Brun)證明了 “9 + 9”。
1924年,德國的拉特馬赫(Rademacher)證明了“7 + 7”。
1932年,英國的埃斯特曼(Estermann)證明了 “6 + 6”。
1937年,意大利的蕾西(Ricei)先后證明了“5 + 7”,“4 + 9”,“3 + 15 ”和“2 + 366”。
1938年,蘇聯(lián)的布赫·夕太勃(Byxwrao)證明了“5 + 5”。
1940年,蘇聯(lián)的布赫·夕太勃(Byxwrao)證明了 “4 + 4”。
1948年,匈牙利的瑞尼(Renyi)證明了“1 + c”,其中c是一很大的自然數。
1956年,中國的王元證明了 “3 + 4”。
1957年,中國的王元先后證明了 “3 + 3 ”和 “2 + 3”。
1962年,中國的潘承洞和蘇聯(lián)的巴爾巴恩(BapoaH)證明了 “1 + 5”,不久,潘承洞和王元又證明了“1 + 4”。
1965年,蘇聯(lián)的布赫·夕太勃(Byxwrao)和小維諾格拉多夫(BHHopappB),以及意大利的朋比利(Bombieri)證明了“1 + 3 ”。
1966年,中國的陳景潤證明了“1 + 2”。
本文來自:逍遙右腦記憶 http://m.portlandfoamroofing.com/chuzhong/313862.html
相關閱讀:初中數學新課程教學反思