龜背上的學(xué)問(wèn)

編輯: 逍遙路 關(guān)鍵詞: 高中數(shù)學(xué) 來(lái)源: 高中學(xué)習(xí)網(wǎng)


傳說(shuō)大禹治水時(shí),在一次疏通河道中,挖出了一只大龜,人們很是驚訝,爭(zhēng)相觀看,只見(jiàn)龜背上清晰刻著圖1所示的一個(gè)數(shù)字方陣。

 

 

                    

 

 

 

這個(gè)方陣,按《孫子算經(jīng)》中籌算記數(shù)的縱橫相間制:“凡算之法,先識(shí)其位。一縱十橫,百立千僵,千十相望,萬(wàn)百相當(dāng)。六不積算,五不單張!笨勺g成現(xiàn)代的數(shù)字,如圖2所示。

 

 

              

 

 

方陣包括了九個(gè)數(shù)字,每一行一與列的數(shù)字和均為15,兩條對(duì)角線上的數(shù)也有相同的性質(zhì)。當(dāng)時(shí),人們以為是天神相助,治水有望了。后來(lái),人們稱刻在龜背上的方陣為“幻方”(國(guó)外稱為“拉丁方”),屬于組合數(shù)學(xué)范疇。使用整數(shù)1—9構(gòu)成的3×3階“拉丁方”唯一可能的和數(shù)是15,這一點(diǎn)只要把這“拉丁方”中所有數(shù)加起來(lái)便可證明,1十2十3十4十5十6十7十8十9=45,要把這幾個(gè)數(shù)分配到三行(或列)使得每行(或列)有同樣的和,那么,每行(或列)的和應(yīng)為45/3=150

 

組合數(shù)學(xué)是數(shù)學(xué)中的一個(gè)分支,在實(shí)際生活中應(yīng)用很廣泛,請(qǐng)看下面的例子。

 

5名待業(yè)青年,有7項(xiàng)可供他們挑選的工作,他們是否能找到自己合適的工作呢?由于每個(gè)人的文化水平、興趣愛(ài)好及性別等原因,每個(gè)人只能從七項(xiàng)工作中挑選某些工種,也就是說(shuō)每個(gè)人都有一張志愿表,最后根據(jù)需求和志愿找到一個(gè)合適的工作。

 

組合數(shù)學(xué)把每一種分配方案叫一種安排。當(dāng)然第一個(gè)問(wèn)題是考慮安排的存在性,這就是存在問(wèn)題;第二個(gè)問(wèn)題是有多少種安排方法,這就是計(jì)數(shù)問(wèn)題。接下去要考慮在眾多的安排中選擇一種最好的方案,這就是所謂的“最優(yōu)化問(wèn)題”。

  存在問(wèn)題、構(gòu)造問(wèn)題、計(jì)數(shù)問(wèn)題和最優(yōu)化問(wèn)題就構(gòu)成了全部組合數(shù)學(xué)的內(nèi)容。如果你想了解更多的組合數(shù)學(xué)問(wèn)題,那就要博覽有關(guān)書籍,你會(huì)得到許多非常有趣的知識(shí),會(huì)給你許多的啟發(fā)和教益。


本文來(lái)自:逍遙右腦記憶 http://m.portlandfoamroofing.com/gaozhong/116889.html

相關(guān)閱讀:2.2指數(shù)函數(shù)